\(\dfrac{a}{b};y=\dfrac{c}{d};z=\dfrac{a+c}{b+d}\)(a,b,c,d
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2017

Vì \(x< y\Rightarrow\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\) (*)

Thêm ab vào hai vế của (*) : ad + ab < bc + ab

                                             => a(b+d) < b(a+c)

                                            => \(\frac{a}{b}< \frac{a+c}{b+d}\) 

                                            => x < z (1)

Thêm cd vào hai vế của (*): ad + cd < bc + cd

                                          => d(a + c) < c(b + d)

                                          => \(\frac{a+c}{b+d}< \frac{c}{d}\)  

                                          => z < y (2)

Từ (1) và (2) => x < z < y

7 tháng 11 2017

Vì x<y⇒ab <cd ⇒ad<bc (*)

Thêm ab vào hai vế của (*) : ad + ab < bc + ab

                                             => a(b+d) < b(a+c)

                                            => ab <a+cb+d  

                                            => x < z (1)

Thêm cd vào hai vế của (*): ad + cd < bc + cd

                                          => d(a + c) < c(b + d)

                                          => a+cb+d <cd   

                                          => z < y (2)

Từ (1) và (2) => x < z < y

15 tháng 9 2019

Bạn tham khảo tại đây:

Câu hỏi của Mạnh Khuất - Toán lớp 7 - Học toán với OnlineMath

8 tháng 6 2017

1

a) Vì \(\dfrac{a}{b}< \dfrac{c}{d}\)

\(\Rightarrow\dfrac{ad}{bd}< \dfrac{bc}{bd}\)

\(\Rightarrow ad< bc\)

2

b) Ta có : \(\dfrac{-1}{3}=\dfrac{-16}{48};\dfrac{-1}{4}=\dfrac{-12}{48}\)

Ta có dãy sau : \(\dfrac{-16}{48};\dfrac{-15}{48};\dfrac{-14}{48};\dfrac{-13}{48};\dfrac{-12}{48}\)

Vậy 3 số hữu tỉ xen giữa \(\dfrac{-1}{3}\)\(\dfrac{-1}{4}\) là :\(\dfrac{-15}{48};\dfrac{-14}{48};\dfrac{-13}{48}\)

1a ) Ta có : \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\)

\(\Leftrightarrow\) \(\dfrac{ad}{bd}\) < \(\dfrac{bc}{bd}\) \(\Rightarrow\) ad < bc

1b ) Như trên

2b) \(\dfrac{-1}{3}\) = \(\dfrac{-16}{48}\) ; \(\dfrac{-1}{4}\) = \(\dfrac{-12}{48}\)

\(\dfrac{-16}{48}\) < \(\dfrac{-15}{48}\) <\(\dfrac{-14}{48}\) < \(\dfrac{-13}{48}\) < \(\dfrac{-12}{48}\)

Vậy 3 số hữu tỉ xen giữa là.................

16 tháng 8 2017

a)Ta có: ad-bc=1 => ad>bc=>\(\dfrac{a}{b}\)>\(\dfrac{c}{d}\)=>x>y (*)
Ta có: cn-dm=1=>cn > dm=> \(\dfrac{c}{d}\)>\(\dfrac{m}{n}\)=> y>z(**)
Từ (*) và (**) ta có: \(\dfrac{m}{n}\)< \(\dfrac{c}{d}\)<\(\dfrac{a}{b}\)
hay z<y<x
b) Ta có: ad-bc=1=> ad=bc+1
cn-dm=1=> cn=dm+1
Ta lại có: cb+dm+1=cb+1+dm
hay cb+cn=ad+dm
=> c(b+n)=d(a+m)
=> \(\dfrac{c}{d}\)=\(\dfrac{a+m}{b+n}\)
Vậy y = t

23 tháng 8 2017

Ta có: \(x< y\Rightarrow\dfrac{a}{m}< \dfrac{b}{m}\Rightarrow a< b\left(m>0\right)\)

\(z=\dfrac{a+b}{2m}>\dfrac{a+a}{2m}=\dfrac{2a}{2m}=\dfrac{a}{m}=x\)

\(z=\dfrac{a+b}{2m}< \dfrac{b+b}{2m}=\dfrac{2b}{2m}=\dfrac{b}{m}=y\)

\(\Rightarrow x< z< y\)

12 tháng 7 2017

Bài 1:

\(\dfrac{a}{b}< \dfrac{c}{d}\) nên ad<bc (1)

Xét tích; a.(b+d)=ab+ad (2)

b.(a+c)=ba+bc (3)

Từ (1),(2),(3) suy ra a.(b+d)<b.(a+c) .

Do đó \(\dfrac{a}{b}< \dfrac{a+c}{b+d}\) (4)

Tương tự ta lại có \(\dfrac{a+c}{b+d}< \dfrac{c}{d}\) (5)

Kết hợp (4),(5) => \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)

hay x<y<z

​Bài 2:

a) x là một số hữu tỉ \(\Leftrightarrow\)\(b-15\ne0\Leftrightarrow b\ne15\)

b)x là số hữu tỉ dương\(\Leftrightarrow b-15>0\Leftrightarrow b>15\)

c) x là số hữu tỉ âm \(\Leftrightarrow b-15< 0\Leftrightarrow b< 15\)

Bài 3:

Ta có: \(\left|x-\dfrac{1}{3}\right|\ge0\) (dấu bằng xảy ra \(\Leftrightarrow x=\dfrac{1}{3}\))

=>\(\left|x-\dfrac{1}{3}\right|+\dfrac{1}{4}\ge\dfrac{1}{4}>\dfrac{1}{5}\)

Vậy A\(>\dfrac{1}{5}\)

​Bài 4:

M>0 \(\Leftrightarrow x+5;x+9\) cùng dấu.Ta thấy x+5<x+9 nên chỉ có 2 trường hợp

M>0 \(\left[{}\begin{matrix}x+5;x+9\left(duong\right)\\x+5;x+9\left(am\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+5\ge0\\x+9\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge-5\\x\ge-9\end{matrix}\right.\)

​Bài 5:

Ta dùng phương pháp phản chứng:

Giả sử tồn tại 2 số hữu tỉ x và y thỏa mãn đẳng thức \(\dfrac{1}{x+y}=\dfrac{1}{x}+\dfrac{1}{y}\)

=>\(\dfrac{1}{x+y}=\dfrac{x+y}{x.y}\Leftrightarrow\left(x+y\right)^2=x.y\)

Đẳng thức này không xảy ra vì \(\left(x+y\right)^2>0\) còn x.y <0 ( do x,y là 2 số trái dấu,không đối nhau)

Vậy không tồn tại 2 số hữu tỉ x và y trái dấu ,không đối nhau thỏa mãn đề bài

13 tháng 6 2018

Bài 1:

Ta có:

\(\dfrac{a}{b}>\dfrac{c}{d}\)

\(\Leftrightarrow\dfrac{a.d}{b.d}>\dfrac{b.c}{b.d}\left(b;d>0\right)\)

\(\Leftrightarrow ad>bc\)

Vậy ...

Bài 2:

Ta có:

\(0< a< 5< b\)

\(\Leftrightarrow a;b>0\)

\(\Leftrightarrow\dfrac{b}{a}>0\)

\(a< 5< b\)

\(\Leftrightarrow a< b\)

\(\Leftrightarrow\dfrac{b}{a}>1\)

Vậy ...

25 tháng 5 2017

a) Ta có: \(\dfrac{a}{b}\)\(\dfrac{c}{d}\)(b > 0, d > 0)

Nếu \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) (b > 0, d > 0) thì ad = bc.

=> Nếu \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\) thì ad < bc.

Vậy nếu \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\) thì ad < bc.

25 tháng 5 2017

a) Ta có: \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\)

=> \(\dfrac{ad}{bd}\) < \(\dfrac{bc}{bd}\)

=> ad < bc

Vậy ad < bc

b) Ta có: ad < bc

=> \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\)

Vậy \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\)

5 tháng 9 2017

1. Ta có: \(\dfrac{a}{b}=\dfrac{ab}{cd},\dfrac{c}{d}=\dfrac{bc}{bd}\)

a) Mẫu chung bd > 0 ( do b > 0, d > 0 ) nên nếu \(\dfrac{ad}{bd}< \dfrac{bc}{bd}\) thì ad < bc

b) Ngược lại, Nếu ad < bc thì \(\dfrac{ad}{bd}< \dfrac{bc}{bd}.\Rightarrow\dfrac{a}{b}< \dfrac{c}{d}\)

Ta có thể viết: \(\dfrac{a}{b}< \dfrac{c}{d}\Leftrightarrow ad< bc\)

5 tháng 9 2017

2. a) Ta có: \(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\) ( 1 )

Thêm ab vào 2 vế của (1): \(ad+ab< bc+ab\)

\(a\left(b+d\right)< b\left(a+c\right)\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\) ( 2 )

Thêm cd vào 2 vế của (1): \(ad+cd< bc+cd\)

\(d\left(a+c\right)< c\left(b+d\right)\Rightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\) ( 3 )

Từ (2) và (3) ta có: \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)