Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)
\(\Leftrightarrow\left(x^3+3x^2+3x+1\right)+\left(y^3+3y^2+3y+1\right)+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\right]+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)
Lại có :\(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1=\left[\left(x+1\right)-\frac{1}{2}\left(y+1\right)\right]^2+\frac{3}{4}\left(y+1\right)^2+1>0\)
Nên \(x+y+2=0\Rightarrow x+y=-2\)
Ta có :
\(M=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{-2}{xy}\)
Vì \(4xy\le\left(x+y\right)^2\Rightarrow4xy\le\left(-2\right)^2\Rightarrow4xy\le4\Rightarrow xy\le1\)
\(\Rightarrow\frac{1}{xy}\ge\frac{1}{1}\Rightarrow\frac{-2}{xy}\le-2\)
hay \(M\le-2\)
Dấu "=" xảy ra khi \(x=y=-1\)
Vậy \(Max_M=-2\)khi \(x=y=-1\)
c) ( Mình nghĩ bài này cho x, y, z ko âm thì mới xảy ra dấu "=" để tìm Min chứ cho x ,y ,z dương thì ko biết nữa ^_^ , mình làm bài này với điều kiện x ,y ,z ko âm nhé )
Ta có :
\(\hept{\begin{cases}2x+y+3z=6\\3x+4y-3z=4\end{cases}\Rightarrow2x+y+3z+3x+4y-3z=6+4}\)
\(\Rightarrow5x+5y=10\Rightarrow x+y=2\)
\(\Rightarrow y=2-x\)
Vì \(y=2-x\)nên \(2x+y+3z=6\Leftrightarrow2x+2-x+3z=6\)
\(\Leftrightarrow x+3z=4\Leftrightarrow3z=4-x\)
\(\Leftrightarrow z=\frac{4-x}{3}\)
Thay \(y=2-x\)và \(z=\frac{4-x}{3}\)vào \(P\)ta có :
\(P=2x+3y-4z=2x+3\left(2-x\right)-4.\frac{4-x}{3}\)
\(\Rightarrow P=2x+6-3x-\frac{16}{3}+\frac{4x}{3}\)
\(\Rightarrow P=\frac{x}{3}+\frac{2}{3}\ge\frac{2}{3}\)( Vì \(x\ge0\))
Dấu "=" xảy ra khi \(x=0\Rightarrow\hept{\begin{cases}y=2\\z=\frac{4}{3}\end{cases}}\)( Thỏa mãn điều kiện y , z ko âm )
Vậy \(Min_P=\frac{2}{3}\)khi \(\hept{\begin{cases}x=0\\y=2\\z=\frac{4}{3}\end{cases}}\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2015}\)
\(\Rightarrow\)\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\) (do x+y+z = 2015)
\(\Rightarrow\)\(\frac{xy+yz+xz}{xyz}=\frac{1}{x+y+z}\)
\(\Rightarrow\)\(\left(xy+yz+xz\right)\left(x+y+z\right)=xyz\)
\(\Rightarrow\)\(\left(xy+yz+xz\right)\left(x+y+z\right)-xyz=0\)
\(\Rightarrow\)\(\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)
đến đây tự lm nốt nha
\(\sqrt{x^3+8}=\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}\le\frac{x^2-x+6}{2}\)
=>\(\frac{x^2}{\sqrt{x^3+8}}\ge\frac{2x^2}{x^2-x+6}\)
=>A\(\ge\frac{2\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\)
mà \(\left(x+y+z\right)^2\ge3xy+3yz+3zx=9\)
=>\(x+y+z\ge3\)
Xét TS-MS= 2\(4\left(xy+yz+zx\right)+x+y+z-18\ge12+6-18=0\)
=>TS/MS \(\ge1\)
=>A\(\ge1\)
Dấu = khi x=y=z=1
\(\hept{\begin{cases}xy+x+y=3< =>xy+x+y+1=4< =>\left(x+1\right)\left(y+1\right)=4\left(1\right)\\yz+y+z=8< =>yz+y+z+1=9< =>\left(y+1\right)\left(z+1\right)=9\left(2\right)\\xz+x+z=15< =>xz+x+z+1=16< =>\left(x+1\right)\left(z+1\right)=16\left(3\right)\end{cases}}\)
Từ (1) , (2) và (3):
\(=>\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2=4.9.16=576=24^2\)
Do x,y,z dương =>(x+1)(y+1)(z+1)=24
từ (1)=>z+1=24:4=6=>z=5
từ (2)=>x+1=\(\frac{8}{3}\)=>x=\(\frac{5}{3}\)
từ (3)=>y+1=\(\frac{3}{2}\)=>y=\(\frac{1}{2}\)
\(=>P=x+y+z=5+\frac{5}{3}+\frac{1}{2}=\frac{43}{6}\)
Ta có:
\(\hept{\begin{cases}x+y+z=3\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{3}\\x^2+y^2+z^2=17\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y+z=3\\2\left(xy+yz+zx\right)=\frac{2xyz}{3}\\x^2+y^2+z^2=17\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y+z=3\\2\left(xy+yz+zx\right)=\frac{2xyz}{3}\\\left(x+y+z\right)^2=17+\frac{2xyz}{3}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y+z=3\\xy+yz+zx=-4\\xyz=-12\end{cases}}\)
Từ đây ta có x, y, z sẽ là 3 nghiệm của phương trình
\(X^3-3X^2-4X+12=0\)
\(\Leftrightarrow\left(X-3\right)\left(X-2\right)\left(X+2\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}X=3\\X=2\\X=-2\end{cases}}\)
Vậy các bộ x, y, z thỏa đề bài là: \(\left(x,y,z\right)=\left(-2,2,3;-2,3,2;2,-2,3;2,3,-2;3,2,-2;3,-2,2\right)\)