K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2020

thx ban

21 tháng 4 2021

Để \(\frac{2a+2b}{ab+1}\) là bình phương của 1 số nguyên thì 2a + 2b chia hết cho ab + 1; mà ab + 1 chia hết cho 2a + 2b => ab + 1 = 2b + 2a
=> \(\frac{2a+2b}{ab+1}\)=1 = 12

AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Lời giải:

Áp dụng BĐT Cô-si:

$\frac{a^2}{2}+8b^2\geq 2\sqrt{\frac{a^2}{2}.8b^2}=4ab$

$\frac{a^2}{2}+8c^2\geq 2\sqrt{\frac{a^2}{2}.8c^2}=4ac$

$2(b^2+c^2)\geq 2.2\sqrt{b^2c^2}=4bc$

Cộng các BĐT trên theo vế và thu gọn ta được:

$a^2+10(b^2+c^2)\geq 4(ab+bc+ac)=4$

Ta có đpcm.

30 tháng 12 2019

tham khảo thôi nhé ko giống y sì đâu

https://olm.vn/hoi-dap/detail/213882782299.html

19 tháng 6 2019

a) Giả sử không có 2 số nào bằng nhau trong các số nguyên dương đẫ cho.

Không mất tính tổng quát ta giả sử: \(a1< a2< a3< a4< ...< a100\)

Nên : \(a1\ge1;a2\ge2;a3\ge3;...;a100\ge100\)

\(\Rightarrow\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}\le\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\)

Mặt khác, ta có : \(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}< \frac{1}{1}+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}=1+99.\frac{1}{2}=\frac{101}{2}\)

\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}< \frac{1}{2}+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}\)có 99 phân số 1/2 )

\(\Rightarrow\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}< \frac{101}{2}\)trái với đề bài ra là \(\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}\ge\frac{101}{2}\)

Vậy tồn tại trong 100 số đã cho ít nhất 2 số bằng nhau ( điều phải chứng minh ).

b) Giả sử trong 100 số trên chỉ tồn tại 2 số bằng nhau ( đã chứng minh 2 số bằng nhau ở phần a)

Không mất tính tổng quát, ta giả sử: 

19 tháng 6 2019

b) Làm tiếp : Giả sử a1=a2.

Nên : \(a1=a2>a3>a4>...>a100\)( áp dụng theo phần a)

\(\Rightarrow a1=a2\ge1;a3\ge2;a4\ge3;...;a100\ge99\)

\(\Rightarrow\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}\le\frac{2}{a1}+\frac{1}{a3}+...+\frac{1}{a100}=\frac{2}{1}+\frac{1}{2}+...+\frac{1}{99}\)

Mặt khác, ta có :\(\frac{2}{1}+\frac{1}{2}+...+\frac{1}{99}< 2+\frac{1}{2}+\frac{1}{3}+\frac{1}{3}+...+\frac{1}{3}=\frac{5}{2}+\frac{97}{3}=\frac{209}{6}\)

\(\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}< \frac{1}{3}+\frac{1}{3}+...+\frac{1}{3}\)có 97 phân số 1/3 )

\(\Rightarrow\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}< \frac{209}{6}< \frac{303}{6}=\frac{101}{2}\)trái với đề bài

Tương tự giả sử lấy bất kỳ 2 số bằng nhau khác tổng \(\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}\)vẫn nhỏ hơn 101/2

Vậy tồn tại trong 100 số đã cho có ít nhất 3 số bằng nhau ( điều phải chứng minh).

13 tháng 4 2018

hinh nhu sai de

9 tháng 12 2017

Lễ độ được coi là đúng mực, tỏ ra biết coi trọng người khác khi tiếp xúc.

9 tháng 12 2017

Osagi ?