K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2023

áp dụng t/c dãy tỉ số bằng nhau ta có: 

\(\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}=\dfrac{a+b-c+a+c-b+b+c-a}{a+b+c}=1\)

ta có: \(\dfrac{a+b-c}{c}=1\Leftrightarrow\dfrac{a+b}{c}-1=1\Leftrightarrow\dfrac{a+b}{c}=2\Rightarrow a+b=2c\)

\(\dfrac{a+c-b}{b}=1\Leftrightarrow\dfrac{a+c}{b}=2\Leftrightarrow a+b=2b\)

\(\dfrac{b+c-a}{a}=1\Leftrightarrow\dfrac{b+c}{a}=2\Leftrightarrow b+c=2a\)

<=>\(A=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\dfrac{2c\cdot2a\cdot2b}{abc}=\dfrac{8abc}{abc}=8\)

 

7 tháng 12 2023

tớ cảm ơn nhó

 

10 tháng 10 2021

Áp dụng t/c dtsbn:

\(\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}=\dfrac{a+b+c}{a+b+c}=1\\ \Rightarrow\left\{{}\begin{matrix}a+b-c=c\\a+c-b=b\\b+c-a=a\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a+b=2c\\a+c=2b\\b+c=2a\end{matrix}\right.\Rightarrow a=b=c\)

\(\Rightarrow P=\dfrac{\left(a+a\right)\left(a+a\right)\left(a+a\right)}{a\cdot a\cdot a}=\dfrac{8a^3}{a^3}=8\)

10 tháng 10 2021

\(\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}=\dfrac{a+b-c+a+c-b+b+c-a}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)

\(\Rightarrow\left\{{}\begin{matrix}a+b-c=c\\a+c-b=b\\b+c-a=a\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=2c\\a+c=2b\\b+c=2a\end{matrix}\right.\)

\(P=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\dfrac{2a.2b.2c}{abc}=8\)

16 tháng 11 2021

Với \(a+b+c=0\Leftrightarrow\left\{{}\begin{matrix}b+c=-a\\c+a=-b\\a+b=-c\end{matrix}\right.\)

\(B=\dfrac{a+b}{a}\cdot\dfrac{a+c}{c}\cdot\dfrac{b+c}{b}=\dfrac{-abc}{abc}=-1\)

Với \(a+b+c\ne0\)

\(\dfrac{a+b-2021c}{c}=\dfrac{b+c-2021a}{a}=\dfrac{c+a-2021b}{b}=\dfrac{-2019\left(a+b+c\right)}{a+b+c}=-2019\\ \Leftrightarrow\left\{{}\begin{matrix}a+b-2021c=-2019c\\b+c-2021a=-2019a\\c+a-2021b=-2019b\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a+b=2c\\b+c=2a\\c+a=2b\end{matrix}\right.\)

\(B=\dfrac{a+b}{a}\cdot\dfrac{a+c}{c}\cdot\dfrac{b+c}{b}=\dfrac{2a\cdot2b\cdot2c}{abc}=8\)

16 tháng 11 2021

Với a+b+c=0⇔⎧⎪⎨⎪⎩b+c=−ac+a=−ba+b=−ca+b+c=0⇔{b+c=−ac+a=−ba+b=−c

B=a+ba⋅a+cc⋅b+cb=−abcabc=−1B=a+ba⋅a+cc⋅b+cb=−abcabc=−1

Với a+b+c≠0a+b+c≠0

a+b−2021cc=b+c−2021aa=c+a−2021bb=−2019(a+b+c)a+b+c=−2019⇔⎧⎪⎨⎪⎩a+b−2021c=−2019cb+c−2021a=−2019ac+a−2021b=−2019b⇔⎧⎪⎨⎪⎩a+b=2cb+c=2ac+a=2b

9 tháng 8 2023

Có: \(\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta được:

\(\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}=\dfrac{a+b-c+a+c-b+b+c-a}{c+b+a}\)

\(=\dfrac{a+b+c}{a+b+c}\)

Xét: a + b + c = 0 \(\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)(1)

Thay (1) vào A, ta có:

\(A=\dfrac{-c.\left(-a\right).\left(-b\right)}{abc}=-1\)

Xét a + b + c ≠ 0: 

\(\Rightarrow\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}=1\)

\(\Rightarrow\dfrac{a+b}{c}-1=\dfrac{a+c}{b}-1=\dfrac{b+c}{a}-1=1\)

\(\Rightarrow\dfrac{a+b}{c}=\dfrac{a+c}{b}=\dfrac{b+c}{a}=2\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=2c\\a+c=2b\\b+c=2a\end{matrix}\right.\)(2)

Thay (2) vào A, ta có:

\(A=\dfrac{2c.2a.2b}{abc}=8\)

Vậy...

 

25 tháng 3 2017

\(\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}\)

\(\Rightarrow\dfrac{a+b-c}{c}+2=\dfrac{a+c-b}{b}+2=\dfrac{b+c-a}{a}+2\)

\(\Rightarrow\dfrac{a+b-c}{c}+\dfrac{2c}{2}=\dfrac{a+c-b}{b}+\dfrac{2b}{b}=\dfrac{b+c-a}{a}+\dfrac{2a}{a}\)

\(\Rightarrow\dfrac{a+b+c}{c}=\dfrac{a+c+b}{b}=\dfrac{b+c+a}{a}\)

\(\Rightarrow a=b=c\) Thay vào A ta được :

\(A=\dfrac{\left(a+a\right)\left(a+a\right)\left(a+a\right)}{a.a.a}=\dfrac{2a.2a.2a}{a^3}=\dfrac{8.a^3}{a^3}=8\)

20 tháng 3 2017

Áp dụng tính chất dãy tỉ số bằng nhau, ta có :

\(\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}=\dfrac{a+b-c+a+c-b+b+c-a}{c+b+a}=\dfrac{2a+2b+2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{a+b-c}{c}=2\\\dfrac{a+c-b}{b}=2\\\dfrac{b+c-a}{a}=2\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}a+b-c=2c\\a+c-b=2b\\b+c-a=2a\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}a+b=2c+c\\a+c=2b+b\\b+c=2a+a\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}a+b=3c\\a+c=3b\\b+c=3a\end{matrix}\right.\)

Ta có :

\(A=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\\ \Rightarrow A=\dfrac{3c\cdot3a\cdot3b}{abc}=\dfrac{27abc}{abc}=27\)

21 tháng 10 2017

Đặt \(\frac{a}{2013}=\frac{b}{2014}=\frac{c}{2015}=k\Rightarrow\hept{\begin{cases}a=2013k\\b=2014k\\c=2015k\end{cases}}\)

Ta có: 4(a - b)(b - c) = 4(2013k - 2014k)(2014k - 2015k) = 4(-k)(-k) = 4k2 (1)

(c - a)2 = (2015k - 2013k)2 = (2k)2 = 4k2 (2)

Từ (1) và (2) ta có đpcm

7 tháng 11 2017

  

Đặt a2013 =b2014 =c2015 =k⇒{

a=2013k
b=2014k
c=2015k

Ta có: 4(a - b)(b - c) = 4(2013k - 2014k)(2014k - 2015k) = 4(-k)(-k) = 4k2 (1)

(c - a)2 = (2015k - 2013k)2 = (2k)2 = 4k2 (2)

Từ (1) và (2) ta có đpcm

21 tháng 3 2018

+) Nếu \(a+b+c=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)

\(\Leftrightarrow P=\left(\dfrac{a}{b}+1\right)\left(\dfrac{b}{c}+1\right)\left(\dfrac{c}{a}+1\right)\)

\(=\left(\dfrac{a}{b}+\dfrac{b}{b}\right)\left(\dfrac{b}{c}+\dfrac{c}{c}\right)\left(\dfrac{c}{a}+\dfrac{a}{a}\right)\)

\(=\dfrac{a+b}{b}.\dfrac{b+c}{c}.\dfrac{a+c}{a}\)

\(=\dfrac{-c}{b}.\dfrac{-a}{c}.\dfrac{-b}{a}\)

\(=-1\)

+) Nếu \(a+b+c\ne0\)

Theo t.c dãy tỉ số bằng nhau ta có

\(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)

Vậy ...

AH
Akai Haruma
Giáo viên
3 tháng 5 2018

Lời giải:
Ta có:

\(\frac{b-c}{(a-b)(a-c)}+\frac{c-a}{(b-a)(b-c)}+\frac{a-b}{(c-a)(c-b)}=2013\)

\(\Leftrightarrow \frac{-(b-c)^2}{(a-b)(b-c)(c-a)}+\frac{-(c-a)^2}{(a-b)(b-c)(c-a)}+\frac{-(a-b)^2}{(a-b)(b-c)(c-a)}=2013\)

\(\Leftrightarrow \frac{-[(a-b)^2+(b-c)^2+(c-a)^2]}{(a-b)(b-c)(c-a)}=2013\)

\(\Rightarrow \frac{2(a^2+b^2+c^2-ab-bc-ac)}{(a-b)(b-c)(c-a)}=-2013(*)\)

Lại có:

\(P=\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\)

\(=\frac{(b-c)(c-a)+(c-a)(a-b)+(a-b)(b-c)}{(a-b)(b-c)(c-a)}\)

\(=\frac{bc-ba-c^2+ca+ca-bc-a^2+ab+ab-ac-b^2+bc}{(a-b)(b-c)(c-a)}\)

\(=\frac{ab+bc+ac-(a^2+b^2+c^2)}{(a-b)(b-c)(c-a)}=-\frac{1}{2}.\frac{2(a^2+b^2+c^2-ab-bc-ac)}{(a-b)(b-c)(c-a)}\)

\(=\frac{-1}{2}.-2013=\frac{2013}{2}\) (theo $(*)$)