Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^2+3y^2+4z^2=21\Rightarrow2x^2\le21-3.1^2-4.1^2=14\)
\(\Rightarrow x\le\sqrt{7}\)
Tương tự ta có \(y\le\sqrt{5}\) và \(z\le2\)
Do đó:
\(\left(z-1\right)\left(z-2\right)\le0\Rightarrow z^2+2\le3z\Rightarrow4z^2+8\le12z\) (1)
\(\left(x-1\right)\left(2x-10\right)\le0\Rightarrow2x^2+10\le12x\) (2)
\(\left(y-1\right)\left(3y-9\right)\le0\Leftrightarrow3y^2+9\le12y\) (3)
Cộng vế (1);(2) và (3):
\(\Rightarrow12\left(x+y+z\right)\ge2x^2+3y^2+4z^2+27\ge48\)
\(\Rightarrow x+y+z\ge4\)
\(M_{min}=4\) khi \(\left(x;y;z\right)=\left(1;1;2\right)\)
Theo chứng minh ban đầu ta có: \(z\le2\Rightarrow z-2\le0\)
Theo giả thiết \(z\ge1\Rightarrow z-1\ge0\)
\(\Rightarrow\left(z-1\right)\left(z-2\right)\le0\)
Tương tự: \(x< \sqrt{5}< 5\Rightarrow x-5< 0\Rightarrow2x-10< 0\)
\(\Rightarrow\left(x-1\right)\left(2x-10\right)\le0\)
y cũng như vậy
Đặt \(J=\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\) với \(\hept{\begin{cases}x,y,z>0\\x+y+z\le1\end{cases}}\left(i\right)\)
Áp dụng bất đẳng thức \(B.C.S\) cho hai bộ số thực không âm gồm có \(\left(x^2;\frac{1}{x^2}\right)\) và \(\left(1^2+9^2\right),\) ta có:
\(\left(x^2+\frac{1}{x^2}\right)\left(1^2+9^2\right)\ge\left(x+\frac{9}{x}\right)^2\)
\(\Rightarrow\) \(\sqrt{x^2+\frac{1}{x^2}}\ge\frac{1}{\sqrt{82}}\left(x+\frac{9}{x}\right)\) \(\left(1\right)\)
Đơn giản thiết lập hai bất đẳng thức còn lại theo vòng hoán vị \(y\rightarrow z\) , ta cũng có:
\(\sqrt{y^2+\frac{1}{y^2}}\ge\frac{1}{\sqrt{82}}\left(y+\frac{9}{y}\right)\) \(\left(2\right);\) \(\sqrt{z^2+\frac{1}{z^2}}\ge\frac{1}{\sqrt{82}}\left(z+\frac{9}{z}\right)\) \(\left(3\right)\)
Cộng từng vế các bđt \(\left(1\right);\) \(\left(2\right);\) và \(\left(3\right)\) , suy ra:
\(J\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}\right)\)
Ta có:
\(K=x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}\)
\(=\left(9x+\frac{1}{x}\right)+\left(9y+\frac{1}{y}\right)+\left(9z+\frac{1}{z}\right)+8\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-8\left(x+y+z\right)\)
Khi đó, áp dụng bđt Cauchy đối với từng ba biểu thức đầu tiên, tiếp tục với bđt Cauchy-Swarz dạng Engel cho biểu thức thứ tư, chú ý rằng điều kiện đã cho \(\left(i\right)\) , ta có:
\(K\ge2\sqrt{9x.\frac{1}{x}}+2\sqrt{9y.\frac{1}{y}}+2\sqrt{9z.\frac{1}{z}}+\frac{72}{x+y+z}-8\left(x+y+z\right)\)
\(=6+6+6+72-8=82\)
Do đó, \(K\ge82\)
Suy ra \(J\ge\frac{82}{\sqrt{82}}=\sqrt{82}\) (đpcm)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(x=y=z=\frac{1}{3}\)
lớn hơn hoặc bằng ba căn ba nhé bạn. sorry nha, minh quên mất
Từ \(x^2-2xy+x-2y\le0.\)
\(\Leftrightarrow\left(x-2y\right)\left(x+1\right)\le0\)(1). Do x;y là các số thực không âm nên x + 1 >0 nên từ (1) => \(0\le x\le2y\)
Với mọi \(0\le x\le2y\)thì \(x^2+3x\le\left(2y\right)^2+3\left(2y\right)=4y^2+6y\)
Do đó, \(M=x^2-5y^2+3x\le4y^2-5y^2+6y=-y^2+6y-9+9=-\left(y-3\right)^2+9\le9\forall y\)
Vậy GTLN của M là: 9 khi y = 3 và x = 2y = 6.