K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2016

 ax^2 + bx + c = 0 

Để phương trình thỏa mãn điều kiện có 2 nghiệm dương phân biệt. 

∆ > 0 
=> b^2 - 4ac > 0 

x1 + x2 = -b/a > 0 
=> b và a trái dấu 

x1.x2 = c/a > 0 
=> c và a cùng dấu 

Từ đó ta xét phương trình cx^2 + bx^2 + a = 0 

∆ = b^2 - 4ac >0 

x3 + x4 = -b/c, vì a và c cùng dấu mà b và a trái dấu nên b và c trái dấu , vì vậy -b/c >0 

x3.x4 = a/c, vì a và c cùng dấu nên a/c > 0 

=> phương trình cx^2 + cx + a có 2 nghiệm dương phân biệt x3 và x4 

Vậy nếu phương trình ax^2 + bx + c = 0 có 2 nghiệm dương phân biệt thì phương trình cx^2 + bx + a = 0 cũng có 2 nghiệm dương phân biệt. 

Ta có, vì x1, x2, x3, x4 không âm, dùng cô si. 

x1 + x2 ≥ 2√( x1.x2 ) 
x3 + x4 ≥ 2√( x3x4 ) 

=> x1 + x2 + x3 + x4 ≥ 2[ √( x1.x2 ) + √( x3x4 ) ] (#) 

Tiếp tục côsi cho 2 số không âm ta có 

√( x1.x2 ) + √( x3x4 ) ≥ 2√[√( x1.x2 )( x3.x4 ) ] (##) 

Theo a ta có 

x1.x2 = c/a 
x3.x4 = a/c 

=> ( x1.x2 )( x3.x4 ) = 1 

=> 2√[√( x1.x2 )( x3.x4 ) ] = 2 

Từ (#) và (##) ta có 

x1 + x2 + x3 + x4 ≥ 4

13 tháng 2 2016

umk bài này về vi-ét mà ban

a: Thay x=5 vào pt, ta được:

5^2-2(m-1)*5+m^2-4m+3=0

=>m^2-4m+3+25-10m+10=0

=>m^2-14m+38=0

=>(m-7)^2=11

=>\(m=\pm\sqrt{11}+7\)

b: x1+x2=2m-2

x1*x2=m^2-4m+3

(x1+x2)^2-4x1x2

=4m^2-8m+4-4m^2+4m-6

=-4m-2

(x1+x2)^2-4x1x2+2(x1+x2)

=-4m-2+4m-4=-6

10 tháng 6 2016

a)Với m=-3

\(pt\Leftrightarrow2\left(4x+1\right)=0\)

\(\Leftrightarrow4x+1=0\)

\(\Leftrightarrow x=-\frac{1}{4}\)

\(\text{Δ}=\left(2m-1\right)^2-8\left(m-1\right)\)

\(=4m^2-4m+1-8m+8\)

\(=4m^2-12m+9=\left(2m-3\right)^2\)

Để phương trình có hai nghiệm phân biệt thì 2m-3<>0

hay m<>3/2

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}3x_1-4x_2=11\\x_1+x_2=\dfrac{-2m+1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_1-4x_2=11\\2x_1+2x_2=-2m+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x_1-4x_2=11\\4x_1+4x_2=-4m+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x_1=-4m+13\\4x_2=3x_1-11\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-4m+13}{7}\\4x_2=\dfrac{-12m+36}{7}-\dfrac{77}{7}=\dfrac{-12m-41}{7}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-4m+13}{7}\\x_2=\dfrac{-12m-41}{28}\end{matrix}\right.\)

Theo Vi-et, ta được: \(x_1x_2=\dfrac{m-1}{2}\)

\(\Leftrightarrow\dfrac{\left(4m-13\right)\left(12m+41\right)}{196}=\dfrac{m-1}{2}\)

\(\Leftrightarrow\left(4m-13\right)\left(12m+1\right)=98\left(m-1\right)\)

\(\Leftrightarrow48m^2+4m-156m-13-98m+98=0\)

\(\Leftrightarrow48m^2-250+85=0\)

Đến đây bạn chỉ cần giải pt bậc hai là xong rồi

9 tháng 3 2022

 \(\Delta=\left(2m-1\right)^2-8\left(m-1\right)=4m^2-12m+10\)

\(=\left(2m-3\right)^2+1>0\)

Vậy pt có 2 nghiệm pb  

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1-2m}{2}\left(1\right)\\x_1x_2=\dfrac{m-1}{2}\left(2\right)\end{matrix}\right.\)

Ta có \(3x_1-4x_2=11\left(3\right)\)

Từ (1) ; (3) ta có hệ \(\left\{{}\begin{matrix}4x_1+4x_2=2-4m\\3x_1-4x_2=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x_1=13-4m\\x_2=\dfrac{1-2m}{2}-x_1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{13-4m}{7}\\x_2=\dfrac{1-2m}{2}-\dfrac{13-4m}{7}\end{matrix}\right.\)

\(x_2=\dfrac{7-14m-26+8m}{14}=\dfrac{-19-6m}{14}\)

Thay vào (2) ta được \(\left(\dfrac{13-4m}{7}\right)\left(\dfrac{-19-6m}{14}\right)=\dfrac{m-1}{2}\)

\(\Leftrightarrow m=4,125\)

6 tháng 4 2023

`a)` Ptr `(1)` có nghiệm `<=>[-(n-1)]^2-(-n-3) >= 0`

              `<=>n^2-2n+1+n+3 >= 0<=>n^2-n+4 >= 0` (LĐ `AA n`)

 `=>` Áp dụng Viét có: `{(x_1+x_2=-b/a=2n-2),(x_1.x_2=c/a=-n-3):}`

Ta có: `x_1 ^2+x_2 ^2=10`

`<=>(x_1+x_2)^2-2x_1.x_2=10`

`<=>(2n-2)^2-2.(-n-3)=10`

`<=>4n^2-8n+4+2n+6-10=0`

`<=>[(n=3/2),(n=0):}`

`b)` Có: `{(x_1+x_2=-b/a=2n-2),(x_1.x_2=c/a=-n-3):}`

`<=>{(x_1+x_2=2n-2),(2x_1.x_2=-2n-3):}`

  `=>x_1+x_2+2x_1.x_2=-5`