Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)=x^3-2x^2+3x+2\)
\(g\left(x\right)=-x^3-3x^2+2\)
1:
a: f(x)=2x^4+2x^3+2x^2+5x+6
g(x)=x^4-2x^3-x^2-5x+3
c: h(x)=2x^4+2x^3+2x^2+5x+6+x^4-2x^3-x^2-5x+3=3x^4+x^2+9
K(x)=f(x)-2g(x)-4x^2
=2x^4+2x^3+2x^2+5x+6-2x^4+4x^3+2x^2+10x-6-4x^2
=6x^3+15x
c: K(x)=0
=>6x^3+15x=0
=>3x(2x^2+5)=0
=>x=0
d: H(x)=3x^4+x^2+9>=9
Dấu = xảy ra khi x=0
a: f(x)=-2x^7+4x^3-2x^2+3
g(x)=-5x^7-2x^3+x
b: f(x)+g(x)
=-2x^7+4x^3-2x^2+3-5x^7-2x^3+x
=-7x^7+2x^3-2x^2+x+3
f(x)-g(x)
=-2x^7+4x^3-2x^2+3+5x^7+2x^3-x
=3x^7+6x^3-2x^2-x+3
c: f(0)=0+0+0+3=3
=>x=0 ko là nghiệm của f(x)
g(0)=0+0+0=0
=>x=0 là nghiệm của g(x)
Bài 1:
a) Ta có: \(P\left(x\right)=3x^4+2x^2-3x^4-2x^2+2x-5\)
\(=\left(3x^4-3x^4\right)+\left(2x^2-2x^2\right)+2x-5\)
\(=2x-5\)
Bài 1:
b)
\(P\left(-1\right)=2\cdot\left(-1\right)-5=-2-5=-7\)
\(P\left(3\right)=2\cdot3-5=6-5=1\)
a, \(f\left(x\right)=2x^2+6x^4-3x^3+2011\)
\(=6x^4-3x^3+2x^2+2011\)
\(g\left(x\right)=2x^3-5x^2-3x^4-2012\)
\(=-3x^4+2x^3-5x^2-2012\)
b, \(f\left(x\right)+g\left(x\right)=6x^4-3x^3+2x^2+2011-3x^4+2x^3-5x^2-2012\)
\(=\left(6x^4-3x^4\right)+\left(2x^3-3x^3\right)+\left(2x^2-5x^2\right)+\left(2011-2012\right)\)
\(=3x^4-x^3-3x^2-1\)
\(f\left(x\right)-g\left(x\right)=6x^4-3x^3+2x^2+2011-\left(-3x^4+2x^3-5x^2-2012\right)\)
\(=6x^4-3x^3+2x^2+2011+3x^4-2x^3+5x^2+2012\)
\(=\left(6x^4+3x^4\right)-\left(3x^3+2x^3\right)+\left(2x^2+5x^2\right)+\left(2011+2012\right)\)
\(=9x^4-5x^3+7x^2+4023\)
F(\(x\)) = - 2\(x\)3 + 7 - 6\(x\) + 5\(x^4\) - 2\(x^3\)
F(\(x\)) = (-2\(x^3\) - 2\(x^3\)) + 7 - 6\(x\) + 5\(x^4\)
F(\(x\)) = -4\(x^3\) + 7 - 6\(x\) + 5\(x^4\)
F(\(x\)) = 5\(x^4\) - 4\(x^3\) - 6\(x\) + 7
G(\(x\)) = 5\(x^2\) + 9\(x\) - 2\(x^4\) - \(x^2\) + 4\(x^3\) - 12
G(\(x\)) = (5\(x^2\) - \(x^2\)) + 9\(x\) - 2\(x^4\) + 4\(x^3\) - 12
G(\(x\)) = 4\(x^2\) + 9\(x\) - 2\(x^4\) + 4\(x^3\) - 12
G(\(x\)) = -2\(x^4\) + 4\(x^3\) +4\(x^2\) + 9\(x\) - 12
b, F(\(x\)) + G(\(x\)) = 5\(x^4\) - 4\(x^3\) - 6\(x\) + 7 + ( -2\(x^4\) + 4\(x^3\)+4\(x^2\)+9\(x\)-12)
F(\(x\)) + G(\(x\)) = 5\(x^4\)- 4\(x^3\) - 6\(x\)+ 7 - 2\(x^4\) + 4\(x^3\) + 4\(x^2\) + 9\(x\) - 12
F(\(x\)) + G(\(x\)) = (5\(x^{4^{ }}\) -2\(x^4\)) -(4\(x^3\) - 4\(x^3\)) + 4\(x^2\) + (9\(x\)-6\(x\)) - ( 12 - 7)
F(\(x\)) + G(\(x\)) = 3\(x^4\) + 4\(x^2\) + 3\(x\) - 5
Ta có:
* \(f\left(x\right)=15-4x^3+2x-x^3+x^2-10\)
\(=-5x^3+x^2+2x+5\)
*\(g\left(x\right)=4x^3+6x^2-5x+5-9x^3+7x\)
\(=-5x^3+6x^2+2x+5\)
a) \(f\left(x\right)-g\left(x\right)=\)\(-5x^3+x^2+2x+5-\left(-5x^3+6x^2+2x+5\right)\)
\(=x^2-6x^2\)
\(=-5x^2\)
b) Ta có: \(f\left(x\right)-g\left(x\right)=-5x^2\)(từ câu a)
\(\Rightarrow-5x^2=-125\)
\(\Rightarrow x^2=25\)\(\Rightarrow\orbr{\begin{cases}x=-5\\x=5\end{cases}}\)