Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(M\left(x\right)=3x^3+x^2+4x^4-x-3x^3+5x^4+2x^2-6\)
\(=\left(4x^4+5x^4\right)+\left(3x^3-3x^3\right)+\left(x^2+2x^2\right)-x-6\)
\(=9x^4+3x^2-x-6\)
Ta có: \(N\left(x\right)=-2x^2-x^4+4x^3-x^2-5x^3+3x+5+x\)
\(=-x^4+\left(4x^3-5x^3\right)+\left(-2x^2-x^2\right)+\left(3x+x\right)+5\)
\(=-x^4-x^3-3x^2+4x+5\)
c) Ta có: M(x)+N(x)
\(=9x^4+3x^2-x-6-x^4-x^3-3x^2+4x+5\)
\(=8x^4-x^3+3x-1\)
a: \(M\left(x\right)=2x^2+3\)
\(N\left(x\right)=3x^3-2x^2+x\)
b: \(M\left(x\right)+N\left(x\right)=3x^3+x+3\)
\(M\left(x\right)-N\left(x\right)=2x^2+3-3x^3+2x^2-x=-3x^3+2x^2-x+3\)
A(x) = x2 + 5x4 - 3x3 + x2 - 4x4 + 3x3 - x + 5
= ( 5x4 - 4x4 ) + ( 3x3 - 3x3 ) + ( x2 + x2 ) - x + 5
= x4 + 2x2 - x + 5
B(x) = x - 5x3 - x2 - x4 + 5x3 - x2 - 3x + 1
= -x4 + ( 5x3 - 5x3 ) + ( -x2 - x2 ) + ( -3x + x ) + 1
= -x4 - 2x2 - 2x + 1
M(x) = A(x) + B(x)
= x4 + 2x2 - x + 5 + ( -x4 - 2x2 - 2x + 1 )
= x4 + 2x2 - x + 5 - x4 - 2x2 - 2x + 1
= -3x + 6
N(x) = A(x) - B(x)
= x4 + 2x2 - x + 5 - ( -x4 - 2x2 - 2x + 1 )
= x4 + 2x2 - x + 5 + x4 + 2x2 + 2x - 1
= 2x4 + 4x2 + x + 4
M(x) = 0 <=> -3x + 6 = 0
<=> -3x = -6
<=> x = 2
Vậy nghiệm của M(x) là 2
a. M(x) + N(x) = 6x3 – 2x2 + 3x +10 - 6x3 + x2 – 6x -10
= (6x3 - 6x3 ) + ( -2x2 + x2 ) + ( 3x - 6x ) + ( 10 - 10 )
= -x2 - 3x
M(x) - N(x) = 6x3 – 2x2 + 3x +10 - ( –6x3 + x2 – 6x -10)
= 6x3 – 2x2 + 3x +10 + 6x3 - x2 + 6x +10
= (6x3 + 6x3 ) + ( -2x2 - x2 ) + ( 3x + 6x) + ( 10 + 10)
= 12x3 - 3x2 + 9x + 20
b. Đặt -x2 - 3x = 0
=> -x2 + (-3)x = 0
=> -x2 + 3.-x = 0
=> -x(-x+ 3) = 0
=>\(\left[{}\begin{matrix}-x=0\\-x+3=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\-x=-3\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Vậy nghiệm của đa thức trên là 0 hoặc -3
a) M(X) + N(x)= (6x3 – 2x2 + 3x +10)
+ (–6x3 + x2 – 6x -10)
M(x) + N(x)= – x2 - 3x.
M(x) + N(x)= (6x3 – 2x2 + 3x +10)
- (–6x3 + x2 – 6x -10)
M(x) - N(x)= 12x3 - x2 + 9x + 20.
b) Nghiệm của M(x) + N(x)= x= 0, -3.
a)
\(A\left(x\right)=3x^3+3x^2+2x-1\)
Bậc của A(x) là 3
Hệ số tự do A(x) là -1
Hệ số cao nhất của A(x) là 3
Tại A(-2)
\(A=3.\left(-2\right)^3+3.\left(-2\right)^2+2.\left(-2\right)-1\)
\(=-17\)
b)
\(B\left(x\right)=5x^4+6x-2x^2+4-5x^4-5x\)
\(=\left(5x^4-5x^4\right)+\left(-2x^2\right)+\left(6x-5x\right)+4\)
\(=-2x^2+x+4\)
c)
\(A\left(x\right)-B\left(x\right)=3x^3+3x^2+2x-1-\left(-2x^2+x+4\right)\)
\(=3x^3+3x^2+2x-1+2x^2-x-4\)
\(=3x^3+\left(3x^2+2x^2\right)+\left(2x-x\right)+\left(-1-4\right)\)
\(=3x^3+5x^2+x-5\)
d)
\(C\left(x\right)-2.\left(-2x^2+x+4\right)=3x^3+3x^2+2x-1\)
\(C\left(x\right)=3x^3+3x^2+2x-1+2.\left(-2x^2+x+4\right)\)
\(C\left(x\right)=3x^3+3x^2+2x-1-4x^2+2x+8\)
\(C\left(x\right)=3x^3+\left(3x^2-4x^2\right)+\left(2x+2x\right)+\left(-1+8\right)\)
\(C\left(x\right)=3x^3-x^2+4x+7\)
chúc bạn học giỏi
a) Tìm h(x) = f(x) - g(x)
f(x) - g(x) = (-2x2 - 3x3 - 5x + 5x3 - x + x2 + 4x + 3 + 4x2) - (2x2 - x3 + 3x + 3x3 + x2 - x - 9x + 2)
= -2x2 - 3x3 - 5x + 5x3 - x + x2 + 4x + 3 + 4x2 - 2x2 + x3 - 3x - 3x3 - x2 + x + 9x - 2
= (-2x2 + x2 + 4x2 - 2x2 - x2) + (-3x3 + 5x3 + x3 - 3x3) + (-5x - x + 4x - 3x + x + 9x) + (3 - 2)
= 5x + 1
Vậy h(x) = 5x + 1
b) Tìm nghiệm của đa thức h(x)
Cho h(x) = 0
\(\Leftrightarrow\) 5x + 1 = 0
5x = 0 + 1
5x = 1
x = \(\dfrac{1}{5}\)
Vậy x = \(\dfrac{1}{5}\) là nghiệm của đa thức h(x).
b)
\(M\left(x\right)+N\left(x\right)-P\left(x\right)=6x^3+3x^2+2x\\ 6x^3+3x^2-4x+9-P\left(x\right)=6x^3+3x^2+2x\\ P\left(x\right)=6x^3+3x^2+2x-6x^3-3x^2+4x-9\\ P\left(x\right)=\left(6x^3-6x^3\right)+\left(3x^2-3x^2\right)+\left(2x+4x\right)-9\\ P\left(x\right)=6x-9\)
c)
\(P\left(x\right)=0\\ \Leftrightarrow6x-9=0\\ \Leftrightarrow6x=9\\ \Leftrightarrow x=1,5\)
Mk k thể giúp phần d được vì .......... k có đề nhá