K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AB+AC>BC

=>AB+AC-BC>0

=>AC-BC>-AB

=>BC-AC<AB

hay AB>CB-CA>CA-CB

AC>BC-BA

=>AC-BC+BA>0

=>AC+BC>BC(luôn đúng)

BC>AC-AB

=>BC-AC+AB>0

=>BC+AB>AC(luôn đúng)

31 tháng 1 2018

bất đẳng thức tam giác sách giáo khoa cx có cách cm đó bạn

31 tháng 1 2018

Bạn giải giúp mình đi. Mình đang cần gấp!!!

19 tháng 3 2019

Chứng minh bất đẳng thức của tam giác 

AC+BC >AB 

Chứng minh bất đẳng thức của tam giác 

AB+BC>AC

AC+BC >AB 

19 tháng 3 2019

Trên tia đối của tia AB, lấy điểm D sao cho AD = AC (h. 18). Trong tam giác BCD, ta sẽ so sánh BD với BC.
Do tia CA nằm giữa hai tia CB và CD nên
(1) góc BCD > góc ACD
Mặt khác, theo cách dựng, tam giác ACD cân tại A nên
(2) góc ACD = góc ADC = góc BDC
Từ (1) và (2) suy ra :
(3) góc BCD > góc BDC
Trong tam giác BCD, từ (3) suy ra :
AB + AC = BD > BC.
(theo định lí về quan hệ giữa góc và cạnh đối diện trong một tam giác).
Các bất đẳng thức trong kết luận của định lí được gọi là các bất đẳng thức tam giác.

9 tháng 3 2019

cái này trong sgk có này

19 tháng 4 2017

a) ∆ABC có cạnh BC lớn nhất nên chân đường cao kẻ từ A phải nằm giữa B và C

=> HB + HC = BC

∆AHC vuông tại H => HC < AC

∆AHB vuông tại H => HB < AB

Cộng theo vế hai bất đẳng thức ta có:

HB + HC < AC + AB

Hay BC < AC + AB

b) BC là cạnh lớn nhất nên suy ra AB < BC và AC < BC

Do đó AB < BC + AC; AC < BC +AB

(cộng thêm AC hoặc AB vào vế phải của bất đẳng thức)

26 tháng 2 2016

chắc là đ

mong các pạn ủng hộ cho mk

8 tháng 4 2015

a) ∆ABC có cạnh BC lớn nhất nên chân đường cao kẻ từ A phải nằm giữa B và C

=> HB  + HC = BC

∆AHC vuông tại H => HC < AC

∆AHB vuông tại H => HB < AB

Cộng theo vế hai bất đẳng thức ta có:

HB + HC < AC + AB

Hay BC < AC + AB

b) BC là cạnh lớn nhất nên suy ra AB < BC và AC < BC

Do đó AB < BC + AC; AC < BC +AB

(cộng thêm AC hoặc AB vào vế phải của bất đẳng thức)