K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2019

a)  đế  C và D cùng tồn tại thì:

\(\hept{\begin{cases}n-1\ne0\\n+1\ne0\end{cases}}\)  <=>  \(\hept{\begin{cases}n\ne1\\n\ne-1\end{cases}}\)

Vậy....

b)   (n là số nguyên)  

để C là số nguyên thì:   2 chia hết cho n - 1

hay n - 1 thuộc Ư(2) = {-2; -1; 1; 2}

=> n = {-1; 0; 2; 3}

Do n # -1   nên   n = { 0; 2; 3}

n = 0 thì D = 4  (t/m)

n = 2 thì D = 2  (t/m)

n = 3 thì D = 7/4  (loại)

Vậy n = {0; 2}  thì C và D đều nguyên

25 tháng 1 2019

a) C và D cùng tồn tại khi \(n\ne\pm1\)

b) Để C là số nguyên

=> 2 chia hết cho n - 1

=> n - 1 thuộc Ư(2) ={1;-1;2;-2}

nếu n - 1 = 1 => n = 2

n - 1 = -1 => n = 0

n-1 = 2 => n = 3

n -1 = - 2 => n = -1 

Để \(D=\frac{n+4}{n+1}=\frac{n+1+3}{n+1}=1+\frac{3}{n+1}\)là số nguyên

=> 3 chia hết cho n + 1

=> n + 1 thuộc Ư(3)={1;-1;3;-3}

nếu n + 1 = 1 => n = 0 (TM)

n + 1 = - 1 => n = - 2 (Loại)

n + 1 = 3 => n = 2 (TM)

n + 1 = - 3 => n = - 4 (Loại)

KL: n = 0 hoặc n  = - 2 thì C và D đều là số nguyên

29 tháng 10 2018

2) Vì p là số nguyên tố nên ta xét các trường hợp sau:

a) Với p = 2 thì p + 10 = 2 + 10 = 12 là hợp số (loại), tương tự với p + 20 cũng là hợp số.

Với p = 3 thì p + 10 = 3 + 10 = 13 là số nguyên tố (nhận); p + 20 = 3 + 20 = 23 là số nguyên tố (nhận)

Vì p là số nguyên tố và p > 3 nên p có dạng 3k + 1; 3k + 2

Với p = 3k + 1 => p + 10 = 3k + 1 + 10 = 3k + 11

AH
Akai Haruma
Giáo viên
25 tháng 2 2023

Lời giải:

Đặt $n+1995=a^2, n+2014=b^2$ với $a,b\in\mathbb{N}$

Khi đó:

$(n+2014)-(n+1995)=b^2-a^2$

$\Leftrightarrow 19=b^2-a^2=(b-a)(b+a)$

Vì $b,a$ là 2 số tự nhiên nên $b+a> b-a$. Vì $b+a>0, (b+a)(b-a)=19>0$ nên $b-a>0$

Suy ra $b+a=19; b-a=1$

$\Rightarrow b=10$

$\Rightarrow n+2014=b^2=10^2=100\Rightarrow n=-1914$

28 tháng 3 2016

1. Xét n chẵn, hai số đều chẵn => ko nguyên tố cùng nhau
2. Xét n lẻ, ta chứng minh 2 số này luôn nguyên tố cùng nhau
9n+24 = 3(3n+8)
Vì 3n+4 không chia hết cho 3, nên ta xét tiếp 3n+8
Giả sử k là ước số của 3n+8 và 3n+4, đương nhiên k lẻ (a)
=> k cũng là ước số của (3n+8)-(3n+4) = 4 => k chẵn (b)
Từ (a) và (b) => Mâu thuẫn
Vậy với n lẻ, 2 số đã cho luôn luôn nguyên tố cùng nhau

24 tháng 7 2016

Tìm số tự nhiên n để 2n+3 và 4n + 1 là hai số nguyên tố cùng nhau

Toán lớp 6 Ước chung

23 tháng 11 2016

Gọi d e ƯC ( 2n+3;4n+1)

suy ra:

(2n+3) chia hết cho d , suy ra 4.(2n+3) chia hết cho d

                                  suy ra 8n+3 chia hết cho d

suy ra

(4n+1) chia hết cho d , suy ra: 2.(4n+1) chia hết cho d

                                  suy ra: 8n+1 chia hết cho d

suy ra : (8n+3)-(8n+1) chia hết cho d

suy ra: 2 chia hết cho d

suy ra : d thuộc Ư(2)

suy ra : d thuộc {1,2}

vì d thuộc Ư(2n+3) mà 2n+3 là số lẻ nên d là số lẻ

suy ra: d khác 2 suy ra: d=1, suy ra: ƯCLN (2n+3;4n+1) = 1

vậy : 2n+3 và 4n+1 là 2 số nguyên tố cùng nhau

30 tháng 5 2017

N = 5 nhé bạn

30 tháng 5 2017

vì n+4 và n+11 đều là số chính phương nên có hệ

\(\hept{\begin{cases}n+4=a^2\\n+11=b^2\end{cases}}\)trừ phương trình ta có :\(b^2-a^2=7\Leftrightarrow\left(b-a\right)\left(b+a\right)=7\) do đó b-a và b+a là ước của 7 nên

  1. \(\hept{\begin{cases}a+b=7\\b-a=1\end{cases}\Leftrightarrow\hept{\begin{cases}a=3\\b=4\end{cases}\Leftrightarrow}\hept{\begin{cases}n+4=9\\n+11=16\end{cases}\Leftrightarrow}n=5}\)
5 tháng 2 2020

giúp mình với các bạn.....

5 tháng 2 2020

a) Ta có : \(D=\frac{3n+5}{3n+2}\)

Để D là phân số \(\Leftrightarrow3n+2\ne0\Leftrightarrow n\ne-\frac{2}{3}\)

b) Mình nhớ mình làm rồi

c) Để D max \(\Leftrightarrow\frac{3n+5}{3n+3}=1+\frac{2}{3n+3}\) max \(\Leftrightarrow\frac{2}{3n+3}max\Leftrightarrow3n+3min\)