Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì bz-cy/a=cx-az/b=ay-bx/c
=> a(bz-cy)/a^2=b(cx-az)/b^2=c(ay-bx)/c^2
=> abz-acy/a^2=bcx=baz/b^2=cay-cbx/c^2
theo tính chất của dãy tỉ số bằng nhau :
=> abz-acy/a^2=bcx=baz/b^2=cay-cbx/c^2=a^2+...
= 0/a^2+b^2+c^2=0
vì bz-cy/a=0=>bz=cy=>y/b=z/c (1)
vì cx-az/b=0=>cx=az=>x/a=z/c (2)
từ (1) và (2) => x/a=y/b=z/c
Ta có : bz-cy/a=cx-az/b=ay-bx/c
=a.(bz-cy)/a.a=b.(cx-az)/b.b=c.(ay-bx)/c.c
=abz-acy/a.a=bcx-baz/b.b=cay-cbx/c.c
=abz-acy+bcx-baz+cay-cbx/a.a+b.b+c.c(áp dụng tính chất dãy tỉ số bằng nhau)
=0 =)bz-cy=cx-az=ay-bx=0
=)bz=cy,cx=az,ay=bx
=)b/y=c/z=a/x(áp dụng tính chất tỉ lệ thức)
=)a:b:c=x:y:z
Ta có: \(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}=\dfrac{a\left(bz-cy\right)}{a^2}=\dfrac{b\left(cx-az\right)}{b^2}=\dfrac{c\left(ay-bx\right)}{c^2}=\dfrac{abz-acy}{a^2}=\dfrac{bcx-abz}{b^2}=\dfrac{acy-bcx}{c^2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{abz-acy}{a^2}=\dfrac{bcx-abz}{b^2}=\dfrac{acy-abx}{c^2}\)
\(=\dfrac{abz-acy+bcx-abz+acy-abx}{a^2+b^2+c^2}\)
\(=\dfrac{0}{a^2+b^2+c^2}=0\)
\(\Rightarrow abz-acy=bcx-abz=acy-abx\)
\(\Rightarrow a\left(bz-cy\right)=b\left(cx-az\right)=c\left(ay-bx\right)\)
\(\Rightarrow bz-cy=cx-az=ay-bx\)
\(\Rightarrow\left\{{}\begin{matrix}bz=cy\\cx=az\\ay=bx\end{matrix}\right.\Rightarrow\dfrac{z}{c}=\dfrac{y}{b};\dfrac{x}{a}=\dfrac{z}{c};\dfrac{y}{b}=\dfrac{x}{a}\)
\(\Rightarrow\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\Rightarrow x:y:z=a:b:c\)
Vậy x:y:z = a:b:c
Ta có :
\(\frac{bz-cy}{a}=\frac{cy-az}{b}=\frac{ay-bx}{c}=\frac{bxz-cxy}{ax}=\frac{cxy-ayz}{by}=\frac{ayz-bxz}{cz}=\frac{0}{ax+by+cz}=0\)
Suy ra : bz = cy \(\Rightarrow\frac{z}{c}=\frac{y}{b}\)( 1 )
cx = az \(\Rightarrow\frac{x}{a}=\frac{z}{c}\) ( 2 )
ay = bx \(\Rightarrow\frac{y}{b}=\frac{x}{a}\) ( 3 )
Từ ( 1 ) , ( 2 ) và ( 3 ) suy ra : \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)hay x : y : z = a : b : c
Ta có \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
\(\Rightarrow\frac{\left(bz-cy\right).x}{ax}=\frac{\left(cx-az\right)y}{by}=\frac{\left(ay-bx\right).z}{cz}\)
\(\Rightarrow\frac{bxz-cxy}{ax}=\frac{cxy-azy}{by}=\frac{ayz-bxz}{cz}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}=\frac{bxz-cxy+cxy-ayz+ayz-bxz}{ax+by+cz}\)
Suy ra:
bz - cy = 0 (1)
cx - az = 0 (2)
ay - bx = 0 (3)
Từ (1) ta có: \(bz=cy\Rightarrow\frac{y}{b}=\frac{z}{c}\left(I\right)\)
Từ (2) ta có: \(cx=az=\frac{z}{c}=\frac{x}{a}\left(II\right)\)
Từ (3) ta có: \(ay=bx=\frac{x}{a}=\frac{y}{b}\left(III\right)\)
Từ (I), (II), (III) => x: y: z = a: b: c