K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2019

Ta có : \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)

\(\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}=\frac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}=0\)

=> \(\frac{bz-cy}{a}=0\)nên bz - cy = 0 => bz = cy.Hay b/y = c/z   [1]

=> \(\frac{cx-az}{b}=0\)nên cx - az = 0 => cx = az . Hay c/z = a/x [2]

Từ 1 và 2 => \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

6 tháng 8 2019

Đó bạn chúc bạn học tốt nhé !ok

6 tháng 8 2019

Chúc bạn học tốt!

Bạn tham khảo tại đây nhé:

Câu hỏi của Hann Hann - Toán lớp 7 - Học toán với OnlineMath

22 tháng 7 2017

Ta có: \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)

\(\Rightarrow\frac{a\left(bz-cy\right)}{a^2}=\frac{b\left(cx-az\right)}{b^2}=\frac{c\left(ay-bx\right)}{c^2}\) (Nhân lần lượt mỗi vé với a,b,c)

\(\Leftrightarrow\frac{abz-acy}{a^2}=\frac{bcx-baz}{b^2}=\frac{cay-cbx}{c^2}\)

\(=\frac{abz-acy+bcx-baz+cay-cbx}{a^2+b^2+c^2}=0\) (Áp dung dãy tỉ số bằng nhau)

\(\Rightarrow\hept{\begin{cases}bz-cy=0\\cx-az=0\end{cases}\Rightarrow\hept{\begin{cases}\frac{b}{y}=\frac{c}{z}\\\frac{a}{x}=\frac{c}{z}\end{cases}\Rightarrow}}\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\) (đpcm)

k cho mình!

7 tháng 1 2017

bn chứng minh điều ngược lại đúng và trong đáp án quyển SBT đấy

22 tháng 8 2022

Thế thì dễ quá đi bạn à.đây là nâng cao

8 tháng 8 2021

Ta có :

\(\dfrac{cy-bx}{x}=\dfrac{az-cx}{y}=\dfrac{bx-ay}{z}=\dfrac{bxz-cxy+cxy-ayz+ayz-bxz}{ax+by+cz}=0\)

\(\Rightarrow\dfrac{cy-bz}{x}=0\) \(\Rightarrow cy=bz\) \(\Rightarrow\) \(\dfrac{b}{y}=\dfrac{c}{z}\left(1\right)\)

\(\Rightarrow\dfrac{az-cx}{y}=0\) \(\Rightarrow az=cx\) \(\Rightarrow\dfrac{a}{x}=\dfrac{c}{z}\left(2\right)\)

Từ (1) và (2) suy ra : \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)

8 tháng 8 2019

ở đây nha bn: https://hoc24.vn/hoi-dap/question/402510.html?pos=1029041

16 tháng 10 2018

\(\frac{bz-cy}{a}\)\(\frac{cx-az}{b}\)=\(\frac{ay-bx}{c}\)

\(\Rightarrow\frac{abz-acy}{a^2}\)=\(\frac{bcx-baz}{b^2}\)\(\frac{cay-cbx}{c^2}\)

Áp dụng t/c ãy tỉ số bằng nhau, ta có: