Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt x/2=y/3=k
Suy ra: x=2k; y=3k
Thay vào biểu thức A ta được:
A=13[2k-(2.3k)]/2.2k+3.3k
A=13(2k-6k)/4k+9k
A=13(-4k)/13k
A=-4k/k
A=-4
Bài làm:
Đặt x/2=y/3=k
Suy ra: x=2k; y=3k
Thay x=2k; y=3k vào biểu thức A ta được:
A=13.[2k-(2.3k)]/2.2k+3.3k
A=13(2k-6k)/4k+9k
A=13.(-4k)/13k
A=-4k/k
A=-4
Đặt \(\frac{x}{2}=\frac{y}{3}=k\Rightarrow x=2k;y=3k\)
Thay \(x=2k;y=3k\) vào biểu thức A ta được
\(A=\frac{13.\left(2k-2.3k\right)}{2.2k+5.3k}=\frac{13.\left(-4k\right)}{19k}=\frac{-52}{19}\)
Vậy A=\(\frac{-52}{19}\)
Đặt \(\dfrac{x}{-4}=\dfrac{y}{-7}=\dfrac{z}{3}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=-4k\\y=-7k\\z=3k\end{matrix}\right.\)
\(\Rightarrow A=\dfrac{-2.\left(-4k\right)+\left(-7k\right)+5.3k}{-4k-3.\left(-7k\right)-6.3k}=\dfrac{16k}{-1k}=-16\)
bài 1 :
B=15-3x-3y
a) x+y-5=0
=>x+y=-5
B=15-3x-3y <=> B=15-3(x+y)
Thay x+y=-5 vào biểu thức B ta được :
B=15-3(-5)
B=15+15
B=30
Vậy giá trị của biểu thức B=15-3x-3y tại x+y+5=0 là 30
b)Theo đề bài ; ta có :
B=15-3x-3.2=10
15-3x-6=10
15-3x=16
3x=-1
\(x=\frac{-1}{3}\)
Bài 2:
a)3x2-7=5
3x2=12
x2=4
x=\(\pm2\)
b)3x-2x2=0
=> 3x=2x2
=>\(\frac{3x}{x^2}=2\)
=>\(\frac{x}{x^2}=\frac{2}{3}\)
=>\(\frac{1}{x}=\frac{2}{3}\)
=>\(3=2x\)
=>\(\frac{3}{2}=x\)
c) 8x2 + 10x + 3 = 0
=>\(8x^2-2x+12x-3=0\)
\(\Rightarrow\left(2x+3\right)\left(4x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+3=0\\4x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-3\\4x=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-3}{2}\\x=\frac{1}{4}\end{cases}}}\)
vậy \(x\in\left\{-\frac{3}{2};\frac{1}{4}\right\}\)
Bài 5 đề sai vì |1| không thể =2
\(\left|2x-3y\right|+\left|2y+3z\right|+\left|x+y+z\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}2x-3y=0\\2y+3z=0\\x+y+z=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x=3y\\3z=-2y\\x+y+z=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3y}{2}\\z=\dfrac{-2y}{3}\\x+y+z=0\end{matrix}\right.\)
\(\Rightarrow x=y=z=0\)