K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{3\sqrt{x}}{x-1}\)

\(=\dfrac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{2x-3\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

 

a) Ta có: \(A=\left(\dfrac{1}{\sqrt{x}-2}-\dfrac{2\sqrt{x}}{4-x}+\dfrac{1}{2+\sqrt{x}}\right)\left(\dfrac{2}{\sqrt{x}}-1\right)\)

\(=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)\cdot\left(\dfrac{2}{\sqrt{x}}-\dfrac{\sqrt{x}}{\sqrt{x}}\right)\)

\(=\dfrac{4\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{-\left(\sqrt{x}-2\right)}{\sqrt{x}}\)

\(=\dfrac{-4}{\sqrt{x}+2}\)

AH
Akai Haruma
Giáo viên
25 tháng 3 2021

Lời giải:

a) 

\(A=\left[\frac{\sqrt{x}+2}{(\sqrt{x}-2)(\sqrt{x}+2)}+\frac{2\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}+\frac{\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)}\right].\frac{2-\sqrt{x}}{\sqrt{x}}\)

\(=\frac{\sqrt{x}+2+2\sqrt{x}+\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)}.\frac{2-\sqrt{x}}{\sqrt{x}}=\frac{4\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}.\frac{2-\sqrt{x}}{\sqrt{x}}=\frac{-4}{\sqrt{x}+2}\)

b) 

$A< -1\Leftrightarrow \frac{-4}{\sqrt{x}+2}+1< 0$

$\Leftrightarrow \frac{\sqrt{x}-2}{\sqrt{x}+2}< 0$

$\Leftrightarrow \sqrt{x}-2< 0\Leftrightarrow 0\leq x< 4$

Kết hợp với ĐKXĐ suy ra $0< x< 4$

13 tháng 5 2021

`A=1/3`
`<=>3\sqrtx-3=\sqrtx`
`<=>2\sqrtx=3`
`<=>x=9/4`

1:

\(=\left(\dfrac{1}{x-2\sqrt{x}}+\dfrac{2}{3\sqrt{x}-6}\right):\dfrac{2\sqrt{x}+3}{3\sqrt{x}}\)

\(=\dfrac{3+2\sqrt{x}}{3\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{3\sqrt{x}}{2\sqrt{x}+3}=\dfrac{1}{\sqrt{x}-2}\)

10 tháng 4 2022

\(\left(đk:x\ne\pm1\right)\)

\(=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\left(\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\left(\dfrac{x-\sqrt{x}+2\sqrt{x}-2-\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\dfrac{x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\dfrac{\sqrt{x}}{x-1}\)

11 tháng 4 2022

bài này hình như bạn làm sai r

 

26 tháng 4 2022

Điều kiện: \(x\ge0,x\ne1\)

\(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\\ =\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{x\sqrt{x}-1}-\dfrac{x+\sqrt{x}+1}{x\sqrt{x}-1}\right):\dfrac{\sqrt{x}-1}{2}\\ =\left(\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{x\sqrt{x}-1}\right):\dfrac{\sqrt{x}-1}{2}\\ =\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\dfrac{\sqrt{x}-1}{2}\\ =\dfrac{2\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)^2\left(x+\sqrt{x}+1\right)}=\dfrac{2}{x+\sqrt{x}+1}\)

Ta có \(x+\sqrt{x}+1=\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0,\forall x\Rightarrow A>0\)

Lại có: \(A-2=\dfrac{2}{x+\sqrt{x}+1}-2=\dfrac{-2\left(x+\sqrt{x}\right)}{x+\sqrt{x}+1}\)

Mà \(x+\sqrt{x}+1>0;x+\sqrt{x}>0\) với mọi \(x\in TXĐ\)

\(\Rightarrow A-2< 0\Rightarrow A< 2\)

Vậy \(0< A< 2\)

12 tháng 11 2023

 `a,`

\(B=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\right):\dfrac{\sqrt{x}}{\sqrt{x}-1}\\ =\left(\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}}\\ =\dfrac{x+2\sqrt{x}+1-\left(x-2\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}}\\ =\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}}\\ =\dfrac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

\(=\dfrac{4}{\sqrt{x}+1}\)

`b,` Để `A *B<0` ta có :

\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\cdot\dfrac{4}{\sqrt{x}+1}< 0\\ \Leftrightarrow\dfrac{4}{\sqrt{x}-1}< 0\\ \Leftrightarrow\sqrt{x}-1< 0\left(vì.4>0\right)\\ \Leftrightarrow\sqrt{x}< 1\\ \Leftrightarrow0\le x< 1\)

Kết hợp với đkxđ ta có : \(0< x< 1\)

NV
11 tháng 4 2022

ĐKXĐ: \(x>0;x\ne1\)

\(Q=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\left(\dfrac{\sqrt{x}+1}{\sqrt{x}}\right)\)

\(=\left(\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2}-\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\dfrac{1}{\sqrt{x}}\)

\(=\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\right).\dfrac{1}{\sqrt{x}}\)

\(=\left(\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\dfrac{1}{\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{1}{\sqrt{x}}=\dfrac{2}{x-1}\)

b.

Để \(Q\in Z\Rightarrow2⋮\left(x-1\right)\Rightarrow x-1=Ư\left(2\right)\)

\(\Rightarrow x-1=\left\{-2;-1;1;2\right\}\)

\(\Rightarrow x=\left\{-1;0;2;3\right\}\)

Kết hợp ĐKXĐ: \(\Rightarrow x=\left\{2;3\right\}\)

(Đáp án của đề bài đã quên mất ĐKXĐ ban đầu nên ko loại 2 giá trị \(x=-1;x=0\))

12 tháng 8 2021

a)A=\(\dfrac{x-4\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)=\(\dfrac{\sqrt{x}-2}{\sqrt{x}}\)

b) Thay x=3+2\(\sqrt{2}\)

A=\(\dfrac{\sqrt{3+2\sqrt{2}}-2}{\sqrt{3+2\sqrt{2}}}\)=\(\dfrac{\sqrt{\left(\sqrt{2}+1\right)^2-2}}{\sqrt{\left(\sqrt{2}+1\right)^2}}\)=\(\dfrac{\sqrt{2}+1-2}{\sqrt{2}+1}\)

A=\(\dfrac{\sqrt{2}-1}{\sqrt{2}+1}\)

c)Ta có \(\dfrac{\sqrt{x}-2}{\sqrt{x}}=1-\dfrac{2}{\sqrt{x}}\)>0

\(\Rightarrow\dfrac{2}{\sqrt{x}}\)<1\(\Rightarrow\sqrt{x}\)>2\(\Rightarrow x>4\)

13 tháng 8 2021

thank