Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P=\(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\)
\(=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{\sqrt{x}\left(\sqrt{x-1}\right)}\)
\(=\frac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}}=\frac{\sqrt{x}}{\sqrt{x}}+\frac{1}{\sqrt{x}}=1+\frac{1}{\sqrt{x}}\)
Để\(P\in Z\)<=>\(\frac{1}{\sqrt{x}}\in Z\Leftrightarrow\sqrt{x}\inƯ\left(1\right)=1\)\(Với\sqrt{x}=1\Leftrightarrow x=1\)loại
Vậy không có giá trị x nào thỏa mãn P\(\in\)Z
\(P=\frac{4\sqrt{x}+3}{x+\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+1}\)
\(P=\frac{4\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}}{\sqrt{x}+1}=\frac{4\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{x}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\frac{x+4\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)}\inℤ\Leftrightarrow x+4\sqrt{x}+3⋮\sqrt{x}\)
Giải tiếp nhé sau đó thử chọn :V
\(p=\frac{4\sqrt{x}+3}{x+\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+1}\)
\(=\frac{4\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{x}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\frac{x+\sqrt{x}+3\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}+3}{\sqrt{x}}=1+\frac{3}{\sqrt{x}}\)
Để \(x\in Z\Rightarrow P\in Z\)
\(\Rightarrow\sqrt{x}\inƯ\left(3\right)= \left\{-3;3\right\}\)
\(\Leftrightarrow x=9\left(t.mĐKXĐ\right)\)
a: \(P=\dfrac{x-\sqrt{x}-1-\sqrt{x}+1}{x-1}\cdot\dfrac{4\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)^2}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)\cdot4\left(\sqrt{x}-2\right)}{\sqrt{x}\left(x-1\right)}=\dfrac{4}{x-1}\)
Để P nguyên dương thì x-1 thuộc {1;4;2}
=>x thuộc {2;5;3}
b: x+y+z=0
=>x=-y-z; y=-x-z; z=-x-y
\(P=\dfrac{x^2}{y^2+z^2-\left(y+z\right)^2}+\dfrac{y^2}{z^2+x^2-\left(x+z\right)^2}+\dfrac{z^2}{x^2+y^2-\left(x+y\right)^2}\)
\(=\dfrac{x^2}{-2yz}+\dfrac{y^2}{-2xz}+\dfrac{z^2}{-2xy}\)
\(=\dfrac{x^3+y^3+z^3}{2xyz}\cdot\left(-1\right)\)
\(=-\dfrac{\left(x+y\right)^3+z^3-3xy\left(x+y\right)}{2xyz}\)
\(=-\dfrac{\left(-z\right)^3+z^3-3xy\cdot\left(-z\right)}{2xyz}=-\dfrac{3}{2}\)
ĐK để phân thức XĐ : x khác 1 và x> 0
Đặt \(B=\left(\frac{\left(\sqrt{x}+2\right)\left(x-1\right)-\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+1\right)}{\left(x+2\sqrt{x}+1\right)\left(x-1\right)}\right)\) ( Đây là mình vừa đặt vừa làm mẫu thức chung nhe)
=> \(B=\left(\frac{x\sqrt{x}-\sqrt{x}+2x-2-x\sqrt{x}-2x-\sqrt{x}+2x+4\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(x-1\right)}\right)\)
=>\(B=\frac{2\sqrt{x}+2x}{\left(\sqrt{x}+1\right)^2\left(x-1\right)}=\frac{2\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(x-1\right)}=\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x-1\right)}\)
A = \(B:\frac{\sqrt{x}}{\sqrt{x+1}}=\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x-1\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}}=\frac{2}{x-1}\)
B, Bạn tự làm ý B nhe
HD để A nguyên => x - 1 thuộc ước của 2 mà 2 có các ước là +-1 và +-2
(+) với x-1 = 2 => x = 3
............................
1) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)
\(P=\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}-\frac{4x}{x-4}\)
\(\Leftrightarrow P=\frac{\left(2+\sqrt{x}\right)^2-\left(2-\sqrt{x}\right)^2+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)
\(\Leftrightarrow P=\frac{4+4\sqrt{x}+x-4+4\sqrt{x}-x+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)
\(\Leftrightarrow P=\frac{4x+8\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)
\(\Leftrightarrow P=\frac{4\sqrt{x}}{2-\sqrt{x}}\)
2) Để \(P=2\)
\(\Leftrightarrow\frac{4\sqrt{x}}{2-\sqrt{x}}=2\)
\(\Leftrightarrow4\sqrt{x}=4-2\sqrt{x}\)
\(\Leftrightarrow6\sqrt{x}=4\)
\(\Leftrightarrow\sqrt{x}=\frac{2}{3}\)
\(\Leftrightarrow x=\frac{4}{9}\)
Vậy để \(P=2\Leftrightarrow x=\frac{4}{9}\)
3) Khi \(\left(\sqrt{x}-2\right)\left(2\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-2=0\\2\sqrt{x}-1==0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=2\\\sqrt{x}=\frac{1}{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\left(ktm\right)\\x=\frac{1}{4}\left(tm\right)\end{cases}}\)
Thay \(x=\frac{1}{4}\)vào P, ta được :
\(\Leftrightarrow P=\frac{4\sqrt{\frac{1}{4}}}{2-\sqrt{\frac{1}{4}}}=\frac{4\cdot\frac{1}{2}}{2-\frac{1}{2}}=\frac{2}{\frac{3}{2}}=\frac{4}{3}\)
4) Để \(P=\frac{\sqrt{x}+3}{2\sqrt{x}-1}\)
\(\Leftrightarrow\frac{4\sqrt{x}}{2-\sqrt{x}}=\frac{\sqrt{x}+3}{2\sqrt{x}-1}\)
\(\Leftrightarrow8x-4\sqrt{x}=-x-\sqrt{x}+6\)
\(\Leftrightarrow9x-3\sqrt{x}-6=0\)
\(\Leftrightarrow3x-\sqrt{x}-2=0\)
\(\Leftrightarrow\sqrt{x}=3x-2\)
\(\Leftrightarrow x=9x^2-12x+4\)
\(\Leftrightarrow9x^2-13x+4=0\)
\(\Leftrightarrow\left(9x-4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}9x-4=0\\x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{4}{9}\\x=1\end{cases}}\)
Thử lại ta được kết quá : \(x=\frac{4}{9}\left(ktm\right)\); \(x=1\left(tm\right)\)
Vậy để \(P=\frac{\sqrt{x}+3}{2\sqrt{x}-1}\Leftrightarrow x=1\)
5) Để biểu thức nhận giá trị nguyên
\(\Leftrightarrow\frac{4\sqrt{x}}{2-\sqrt{x}}\inℤ\)
\(\Leftrightarrow4\sqrt{x}⋮2-\sqrt{x}\)
\(\Leftrightarrow-4\left(2-\sqrt{x}\right)+8⋮2-\sqrt{x}\)
\(\Leftrightarrow8⋮2-\sqrt{x}\)
\(\Leftrightarrow2-\sqrt{x}\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{1;3;0;4;-2;6;-6;10\right\}\)
Ta loại các giá trị < 0
\(\Leftrightarrow\sqrt{x}\in\left\{1;3;0;4;6;10\right\}\)
\(\Leftrightarrow x\in\left\{1;9;0;16;36;100\right\}\)
Vậy để \(P\inℤ\Leftrightarrow x\in\left\{1;9;0;16;36;100\right\}\)
\(\)
\(P=\dfrac{x-1}{x-\sqrt{x}}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
Để P là số nguyên thì 1 chia hết cho căn x
=>căn x=1
=>x=1