K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2017

Ta có

\(2a^2+2b^2=5ab\)

\(\Leftrightarrow2a^2-5ab+2b^2=0\)

\(\Leftrightarrow2a^2-ab-4ab+2b^2=0\)

\(\Leftrightarrow a\left(2a-b\right)-2b\left(2a-b\right)=0\)

\(\Leftrightarrow\left(2a-b\right)\left(a-2b\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2a-b=0\\a-2b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2a=b\\a=2b\end{cases}}}\)

Vì a>b>0 nên 2a>b

\(\Rightarrow a=2b\)

Thay vào P ta có 

\(P=\frac{2.2b+b}{3.2b-b}=\frac{5b}{5b}=1\)

7 tháng 6 2017

1 là đúng rùi

10 tháng 9 2017

Ta có : \(2\left(a^2+b^2\right)=5ab\)

\(\Leftrightarrow2a^2+2b^2=5ab\)

\(\Leftrightarrow2a^2-5ab+2b^2=0\)

\(\Leftrightarrow2a^2-4ab-ab+2b^2=0\)

\(\Leftrightarrow2a\left(a-2b\right)-b\left(a-2b\right)=0\)

\(\Leftrightarrow\left(2a-b\right)\left(a-2b\right)=0\)

\(\Leftrightarrow a=2b\) ( vì \(a>b>0\) )

Thay vào viểu thức P, ta có :

\(P=\dfrac{2.2b+b}{3.2b-b}=1\)

1 tháng 10 2020

\(B=\frac{\left(2a-b\right)\left(3a+b\right)+\left(5b-a\right)\left(3a-b\right)}{9a^2-b^2}=\frac{3a^2+15ab-6b^2}{9a^2-b^2}\)\(=\frac{3a^2+3\left(3b^2-10a^2\right)-6b^2}{9a^2-b^2}=\frac{-3\left(9a^2-b^2\right)}{9a^2-b^2}=-3\)

AH
Akai Haruma
Giáo viên
30 tháng 10 2020

1. Ta thấy:

\(\frac{(a-b)^3}{(\sqrt{a}-\sqrt{b})^3}-b\sqrt{b}+2a\sqrt{a}=\frac{(\sqrt{a}-\sqrt{b})^3(\sqrt{a}+\sqrt{b})^3}{(\sqrt{a}-\sqrt{b})^3}-b\sqrt{b}+2a\sqrt{a}\)

\(=(\sqrt{a}+\sqrt{b})^3-b\sqrt{b}+2a\sqrt{a}=a\sqrt{a}+b\sqrt{b}+3\sqrt{ab}(\sqrt{a}+\sqrt{b})-b\sqrt{b}+2a\sqrt{a}\)

\(=3a\sqrt{a}+3\sqrt{ab}(\sqrt{a}+\sqrt{b})=3\sqrt{a}(a+\sqrt{ab}+b)\)

$a\sqrt{a}-b\sqrt{b}=(\sqrt{a}-\sqrt{b})(a+\sqrt{ab}+b)$

\(\frac{\frac{(a-b)^3}{(\sqrt{a}-\sqrt{b})^3}-b\sqrt{b}+2a\sqrt{a}}{a\sqrt{a}-b\sqrt{b}}=\frac{3\sqrt{a}}{\sqrt{a}-\sqrt{b}}(1)\)

\(\frac{3a+3\sqrt{ab}}{b-a}=\frac{3\sqrt{a}(\sqrt{a}+\sqrt{b})}{(\sqrt{b}-\sqrt{a})(\sqrt{b}+\sqrt{a})}=\frac{-3\sqrt{a}}{\sqrt{a}-\sqrt{b}}(2)\)

Từ $(1);(2)$ ta có đpcm.

AH
Akai Haruma
Giáo viên
30 tháng 10 2020

Câu 2:

Điều kiện đã cho tương đương với:

$\frac{a-b}{a(a+b)}+\frac{a+b}{a(a-b)}=\frac{3a-b}{(a-b)(a+b)}$

$\Leftrightarrow \frac{(a-b)^2}{a(a+b)(a-b)}+\frac{(a+b)^2}{a(a-b)(a+b)}=\frac{a(3a-b)}{a(a-b)(a+b)}$

$\Leftrightarrow (a-b)^2+(a+b)^2=a(3a-b)$

$\Leftrightarrow 2a^2+2b^2=3a^2-ab$

$\Leftrightarrow a^2-ab-2b^2=0$

$\Leftrightarrow (a+b)(a-2b)=0$

$\Leftrightarrow a=-b$ hoặc $a=2b$

Nếu $a=-b$ thì $|a|=|b|$ (trái giả thiết). Do đó $a=2b$

Khi đó:

$P=\frac{(2b)^3+2(2b)^2.b+3b^3}{2(2b)^3+2b.b^2+b^3}=\frac{19b^3}{19b^3}=1$

21 tháng 10 2019

quy đồng mẫu số ta được

\(\frac{\left(a-b\right)^2}{a\left(a^2-b^2\right)}+\frac{\left(a+b\right)^2}{a\left(a^2-b^2\right)}=\frac{a\left(3a-b\right)}{a\left(a^2-b^2\right)}\)<=> (a-b)2 +(a+b)2 = a(3a-b) <=> a2- ab- 2b2= 0 <=> (a+ b)(a- 2b) = 0

<=> a=-b hoăc a =2b

với a= -b => P= \(\frac{-b^3+2b^3+2b^3}{-2b^3-b^3+2b^3}=-3\)

với a =2b => P= \(\frac{\left(2b\right)^3+2.\left(2b\right)^2b+2b^3}{2.\left(2b\right)^3+2b.b^2+2b^3}=\frac{3}{2}\)

27 tháng 7 2019

\( Q = \dfrac{{{{\left( {\dfrac{{a - b}}{{\sqrt a + \sqrt b }}} \right)}^3} + 2a\sqrt a + b\sqrt b }}{{3{a^2} + 3b\sqrt {ab} }} + \dfrac{{\sqrt {ab} - a}}{{a\sqrt a - b\sqrt a }}\\ Q = \dfrac{{{{\left[ {\dfrac{{\left( {\sqrt a - \sqrt b } \right)\left( {\sqrt a + \sqrt b } \right)}}{{\sqrt a + \sqrt b }}} \right]}^3} + 2a\sqrt a + b\sqrt b }}{{3\left( {{a^2} + b\sqrt {ab} } \right)}} + \dfrac{{\sqrt a \left( {\sqrt b - \sqrt a } \right)}}{{\sqrt a \left( {a - b} \right)}}\\ Q = \dfrac{{{{\left( {\sqrt a - \sqrt b } \right)}^3} + 2a\sqrt a + b\sqrt b }}{{3\sqrt a \left( {a\sqrt a + b\sqrt b } \right)}} + \dfrac{{ - \left( {\sqrt a - \sqrt b } \right)}}{{\left( {\sqrt a - \sqrt b } \right)\left( {\sqrt a + \sqrt b } \right)}}\\ Q = \dfrac{1}{{\sqrt a + \sqrt b }} + \dfrac{{ - 1}}{{\sqrt a + \sqrt b }} = 0 \)

Vậy Q không phụ thuộc vào a,b

15 tháng 8 2017

Vì \(a>b>0\Rightarrow A=\frac{a+b}{a-b}>0\)

\(2a^2+2b^2=5ab\Rightarrow a^2+b^2=\frac{5ab}{2}\)

Ta có : \(E^2=\frac{\left(a+b\right)^2}{\left(a-b\right)^2}=\frac{a^2+b^2+2ab}{a^2+b^2-2ab}=\frac{\frac{5ab}{2}+2ab}{\frac{5ab}{2}-2ab}=\frac{\frac{9}{2}ab}{\frac{1}{2}ab}=\frac{\frac{9}{2}}{\frac{1}{2}}=9\)

\(E^2=9\Rightarrow E=3\)(vì E>0)

Vậy \(E=3\)

15 tháng 8 2017

Có : \(2a^2+2b^2=5ab\Rightarrow\hept{\begin{cases}2a^2+2b^2-4ab=ab\\2a^2+2b^2+4ab=9ab\end{cases}}\Rightarrow\hept{\begin{cases}2\left(a-b\right)^2=ab\\2\left(a+b\right)^2=9ab\end{cases}}\Rightarrow\hept{\begin{cases}a-b=\sqrt{\frac{ab}{2}}\\a+b=\sqrt{\frac{9ab}{2}}\end{cases}}\)

\(\Rightarrow E=\frac{\sqrt{\frac{9ab}{2}}}{\sqrt{\frac{ab}{2}}}=\sqrt{\frac{\frac{9ab}{2}}{\frac{ab}{2}}}=\sqrt{\frac{9ab}{2}.\frac{2}{ab}}=\sqrt{9}=3\)

26 tháng 11 2021

A = 0

26 tháng 11 2021

A=0