Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ:...
\(P=\left(\frac{\left(\sqrt{a}+1\right)\left(\sqrt{ab}-1\right)+\left(\sqrt{ab}+\sqrt{a}\right)\left(\sqrt{ab}+1\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}-1\right):\left(\frac{\left(\sqrt{a}+1\right)\left(\sqrt{ab}-1\right)-\left(\sqrt{ab}+\sqrt{a}\right)\left(\sqrt{ab}+1\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}+1\right)\)
\(=\left(\frac{2a\sqrt{b}+2\sqrt{ab}}{ab-1}\right):\left(\frac{-2\sqrt{a}-2}{ab-1}\right)=\frac{\sqrt{ab}\left(\sqrt{a}+1\right)}{\left(ab-1\right)}.\frac{\left(ab-1\right)}{-\left(\sqrt{a}+1\right)}=-\sqrt{ab}\)
\(b=\frac{\sqrt{3}-1}{\sqrt{3}+1}=\frac{\left(\sqrt{3}-1\right)^2}{2}=2-\sqrt{3}\)
\(\Rightarrow P=-\sqrt{ab}=-\sqrt{\left(2-\sqrt{3}\right)^2}=\sqrt{3}-2\)
\(\sqrt{a}+\sqrt{b}=4\Rightarrow\sqrt{b}=4-\sqrt{a}\)
\(\Rightarrow P=-\sqrt{a}\left(4-\sqrt{a}\right)=a-4\sqrt{a}=\left(\sqrt{a}-2\right)^2-4\ge-4\)
\(\Rightarrow P_{min}=-4\) khi \(\sqrt{a}-2=0\Leftrightarrow\left\{{}\begin{matrix}a=4\\b=4\end{matrix}\right.\)
https://vndoc.com/de-thi-hoc-sinh-gioi-mon-toan-lop-9-nam-hoc-2015-2016-truong-thcs-thanh-van-ha-noi/download
a) B= \(\frac{1}{\sqrt{a}}\)(ĐKXĐ: a,b>0) B) Khi a= \(6+2\sqrt{5}\)thì B=\(\frac{1}{\sqrt{\left(\sqrt{5}+1\right)^2}}\)=\(\frac{1}{\sqrt{5}+1}\) C) Do \(\sqrt{a}>0\)\(\Rightarrow\frac{1}{\sqrt{a}}>0\)\(\Rightarrow\frac{1}{\sqrt{a}}>-1\)
\(A=\left(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{3\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}\right)\left[\left(\frac{1}{\sqrt{a}-\sqrt{b}}-\frac{3\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}\right):\frac{a-b}{a+\sqrt{ab}+b}\right]\)
\(A=\left[\frac{a-\sqrt{ab}+b+3\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}\right].\left[\frac{a+b+\sqrt{ab}-3\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}.\frac{a+\sqrt{ab}+b}{a-b}\right]\)
\(A=\left[\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}\right].\left[\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}.\frac{1}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\right]\)
\(A=\frac{\sqrt{a}+\sqrt{b}}{a-\sqrt{ab}+b}.\frac{1}{\sqrt{a}+\sqrt{b}}=\frac{1}{a-\sqrt{ab}+b}\)
Điều kiện : a, b\(\ge0\)