K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2021

*Max
Xét `P-4`
`=(4\sqrtx+3-4x-4)/(x+1)`
`=(-4x+4\sqrtx-1)/(x+1)`
`=(-(2\sqrtx-1)^2)/(x+1)<=0`
`=>P<=1`
Dấu "=" `<=>2\sqrtx=1<=>x=1/4`
*Min
Xét `P+1`
`=(4\sqrtx+3+x+1)/(x+1)`
`=(x+4\sqrtx+4)/(x+1)`
`=(\sqrtx+2)^2/(x+1)>=0`
`=>P>=-1`
Dấu "=" `<=>\sqrtx+2=0<=>\sqrtx=-2`(vô lý)
=>Không có giá trị nhỏ nhất.

26 tháng 5 2019

\(M=\left[\frac{\sqrt{x}\left(2\sqrt{x}+3\right)}{2x+2\sqrt{x}+3\sqrt{x}+3}+\frac{2}{\sqrt{x}+1}\right].\frac{\sqrt{x}+2018}{\sqrt{x}+2}\)

\(=\left[\frac{\sqrt{x}\left(2\sqrt{x}+3\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}+3\right)}+\frac{2}{\sqrt{x}+1}\right].\frac{\sqrt{x}+2018}{\sqrt{x}+2}\)

\(=\frac{\sqrt{x}+2}{\sqrt{x}+1}.\frac{\sqrt{x}+2018}{\sqrt{x}+2}\)

\(=\frac{\sqrt{x}+2018}{\sqrt{x}+1}\)

\(\frac{\sqrt{x}+2018}{\sqrt{x}+1}=1+\frac{2017}{\sqrt{x}+1}\le2018\)

Dấu "=" xảy ra \(\Leftrightarrow\)

... 

30 tháng 7 2018

mk giải 1 bài lm mẩu nha .

+) ta có : \(A=x-12\sqrt{x}\Leftrightarrow x-12\sqrt{x}-A=0\)

vì phương trình này luôn có nghiệm \(\Leftrightarrow\Delta'\ge0\)

\(\Leftrightarrow6^2+A\ge0\Leftrightarrow A\ge-36\)

vậy giá trị nhỏ nhất của \(A\)\(-36\) dấu "=" xảy ra khi \(\sqrt{x}=\dfrac{-b'}{a}=\dfrac{6}{1}=6\Leftrightarrow x=36\)

mấy câu còn lại bn chuyển quế đưa về phương trình bật 2 theo \(x\) rồi giải như trên là đc :

30 tháng 7 2018

lộn ! là phương trình bật 2 đối với ẩn là \(\sqrt{x}\) nha :

DƯƠNG PHAN KHÁNH DƯƠNG

16 tháng 2 2021

Ta có: \(\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\dfrac{4\sqrt{x}}{3\left[\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]}\) 

Lại có: \(4\sqrt{x}\ge0\) với mọi x

\(3\left[\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]>0\) với mọi x

\(\Rightarrow\) \(\dfrac{4\sqrt{x}}{3\left[\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]}\ge0\) với mọi x

Dấu "=" xảy ra \(\Leftrightarrow\) x = 0

Vậy ...

Chúc bn học tốt! (Mk ms nghĩ ra được GTNN thôi thông cảm!)

16 tháng 2 2021

Còn tìm GTLN:

Ta có: \(\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\dfrac{4\sqrt{x}}{3\left[\left(\sqrt{x}-1\right)^2+\sqrt{x}\right]}\le\dfrac{4\sqrt{x}}{3\sqrt{x}}=\dfrac{4}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow\) \(\sqrt{x}-1=0\) \(\Leftrightarrow\) x = 1

Vậy ...

Chúc bn học tốt!

1, Với \(x\ge0,x\ne1\) ta có :

\(P=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-1\right)\)

   \(=\dfrac{\sqrt{x}+1+\sqrt{x}}{x-1}:\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}-1}\)

   \(=\dfrac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

   \(=\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}\)

2, Ta có \(P=\dfrac{7}{4}\)

          \(\Rightarrow\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}=\dfrac{7}{4}\)

         \(\Leftrightarrow4\left(2\sqrt{x}+1\right)=7\left(\sqrt{x}+1\right)\)

         \(\Leftrightarrow8\sqrt{x}+4=7\sqrt{x}=7\)

          \(\Leftrightarrow\sqrt{x}=3\)

          \(\Leftrightarrow x=9\left(tm\right)\)

1) Ta có: \(P=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-1\right)\)

\(=\left(\dfrac{\sqrt{x}+1+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}-1}\right)\)

\(=\dfrac{2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}-\sqrt{x}+1}\)

\(=\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}\)

2) Để \(P=\dfrac{7}{4}\) thì \(\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}=\dfrac{7}{4}\)

\(\Leftrightarrow4\cdot\left(2\sqrt{x}+1\right)=7\left(\sqrt{x}+1\right)\)

\(\Leftrightarrow8\sqrt{x}+4=7\sqrt{x}+7\)

\(\Leftrightarrow8\sqrt{x}-7\sqrt{x}=7-4\)

\(\Leftrightarrow\sqrt{x}=3\)

hay x=9(nhận)

Vậy: Để \(P=\dfrac{7}{4}\) thì x=9

7 tháng 12 2021

\(a,P=\dfrac{\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{2-\sqrt{x}}{\sqrt{x}}=\dfrac{-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}=\dfrac{-2}{\sqrt{x}+2}\\ P=-\dfrac{3}{5}\Leftrightarrow\dfrac{2}{\sqrt{x}+2}=\dfrac{3}{5}\\ \Leftrightarrow3\sqrt{x}+6=10\Leftrightarrow\sqrt{x}=\dfrac{4}{3}\Leftrightarrow x=\dfrac{16}{9}\left(tm\right)\)

8 tháng 12 2021

\(P=-\dfrac{3}{5}\) sao suy ra đc \(\dfrac{2}{\sqrt{x}+2}=\dfrac{3}{5}\) thế

 

NV
13 tháng 5 2021

\(\sqrt{A}\ge0\) ; \(\forall A\) nên GTNN của \(\sqrt{A}\) là \(0\)

Dấu "=" xảy ra khi \(x=0\)

AH
Akai Haruma
Giáo viên
9 tháng 7 2021

Lời giải:
\(P=\frac{2(\sqrt{x}+1)-3}{\sqrt{x}+1}=2-\frac{3}{\sqrt{x}+1}\)

Vì $\sqrt{x}\geq 0$ với mọi $x\neq 1; x\geq 0$

$\Rightarrow \sqrt{x}+1\geq 1\Rightarrow \frac{3}{\sqrt{x}+1}\leq 3$

$\Rightarrow P\geq 2-3=-1$
Vậy $P_{\min}=-1$. Giá trị này đạt tại $x=0$