Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: x=0; x<>1
\(M=\left(2+\sqrt{x}\right)\left(1-2\sqrt{x}-x+1+\sqrt{x}+x\right)\)
\(=\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)=4-x\)
b: Sửa đề: P=1/M
P=1/4-x=-1/x-4
Để P nguyên thì x-4 thuộc {1;-1}
=>x thuộc {5;3}
a) ĐKXĐ: \(x\ge0,x\ne1\)
b) \(A=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)
\(=\sqrt{x}-1+\sqrt{x}=2\sqrt{x}-1\)
c) \(A=2\sqrt{x}-1< -1\Leftrightarrow2\sqrt{x}< 0\)(vô lý do \(2\sqrt{x}\ge0\forall x\))
Vậy \(S=\varnothing\)
Bài 3:
\(A=\dfrac{x+1-2\sqrt{x}}{\sqrt{x}-1}+\dfrac{x+\sqrt{x}}{\sqrt[]{x}+1}\\ DKXD:x\ne1;x\ge0\\ A=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\\ A=\sqrt{x}-1+\sqrt{x}\\ A=2\sqrt{x}+1\)
\(C.A< -1\Leftrightarrow2\sqrt{x}-1< -1\\ \Leftrightarrow2\sqrt{x}< 0\\ \Leftrightarrow x< 0\left(ktmdk\right)\\ =>BPTVN:S=\varnothing\)
a: Thay x=36 vào B, ta được:
\(B=\dfrac{6}{6-3}=\dfrac{6}{3}=2\)
a) \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{\sqrt{x}-4}{x-1}\right)\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\left(dkxd:x\ge0;x\ne1;x\ne4\right)\)
\(=\left[\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)
\(=\dfrac{x-\sqrt{x}+\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)
\(=\dfrac{x-4}{\sqrt{x}-1}\cdot\dfrac{1}{\sqrt{x}-2}\)
\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\)
b) Với \(x\ge0;x\ne1;x\ne4\):
Thay \(x=3+2\sqrt{2}\) vào \(P\), ta được:
\(P=\dfrac{\sqrt{3+2\sqrt{2}}+2}{\sqrt{3+2\sqrt{2}}-1}\)
\(=\dfrac{\sqrt{\left(\sqrt{2}\right)^2+2\cdot\sqrt{2}\cdot1+1^2}+2}{\sqrt{\left(\sqrt{2}\right)^2+2\cdot\sqrt{2}\cdot1+1^2}-1}\)
\(=\dfrac{\sqrt{\left(\sqrt{2}+1\right)^2}+2}{\sqrt{\left(\sqrt{2}+1\right)^2}-1}\)
\(=\dfrac{\sqrt{2}+1+2}{\sqrt{2}+1-1}\)
\(=\dfrac{\sqrt{2}+3}{\sqrt{2}}\)
\(=\dfrac{2+3\sqrt{2}}{2}\)
c) Với \(x\ge0;x\ne1;x\ne4\),
\(P=\dfrac{\sqrt{x}+2}{\sqrt{x}-1}=\dfrac{\sqrt{x}-1+3}{\sqrt{x}-1}=1+\dfrac{3}{\sqrt{x}-1}\)
Để \(P\) có giá trị nguyên thì \(\dfrac{3}{\sqrt{x}-1}\) có giá trị nguyên
\(\Rightarrow 3\vdots\sqrt x-1\\\Rightarrow \sqrt x-1\in Ư(3)\)
\(\Rightarrow\sqrt{x}-1\in\left\{1;3;-1;-3\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{2;4;0;-2\right\}\) mà \(\sqrt{x}\ge0\)
\(\Rightarrow\sqrt{x}\in\left\{2;4;0\right\}\)
\(\Rightarrow x\in\left\{4;16;0\right\}\)
Kết hợp với ĐKXĐ của \(x\), ta được:
\(x\in\left\{0;16\right\}\)
Vậy: ...
\(\text{#}Toru\)
a: \(A=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{1}{x-\sqrt{x}}\right)\cdot\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}\)
\(=\dfrac{x-\sqrt{x}-\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}\)
\(=\dfrac{x-2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)^2}\)
b: Để A<=3/căn x thì \(\dfrac{x-2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)^2}< =\dfrac{3}{\sqrt{x}}\)
=>\(\dfrac{x-2\sqrt{x}-1-3x+6\sqrt{x}-3}{\left(\sqrt{x}-1\right)^2}< =0\)
=>\(-2x+4\sqrt{x}-4< =0\)
=>\(x-2\sqrt{x}+2>=0\)(luôn đúng)
a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\notin\left\{4;9\right\}\end{matrix}\right.\)
\(P=\left(\dfrac{1}{\sqrt{x}+2}-\dfrac{1}{\sqrt{x}-2}\right):\dfrac{\sqrt{x}-3}{4-x}\)
\(=\dfrac{\sqrt{x}-2-\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{4-x}{\sqrt{x}-3}\)
\(=\dfrac{-4\left(4-x\right)}{\left(x-4\right)\left(\sqrt{x}-3\right)}=\dfrac{4}{\sqrt{x}-3}\)
b: P>-1
=>P+1>0
=>\(\dfrac{4}{\sqrt{x}-3}+1>0\)
=>\(\dfrac{4+\sqrt{x}-3}{\sqrt{x}-3}>0\)
=>\(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}>0\)
=>\(\sqrt{x}-3>0\)
=>x>9
Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:
Hai lớp 9A; 9B của một trường Trung học cơ sở có 90 học sinh. Trong đợt quyên góp sách vở ủng hộ học sinh vùng lũ lụt, mỗi bạn lớp 9A ủng hộ 3 quyển, mỗi bạn lớp 9B ủng hộ 2 quyển. Tính số học sinh của mỗi lớp biết rằng cả hai lớp ủng hộ được 222 quyển sách và vở.
Giải
Gọi số học sinh lớp 9A là x (x là số tự nhiên, x < 90)
=> Số học sinh lớp 9B: 90 - x (học sinh)
Số sách và vở lớp 9A quyên góp: 3x (quyển)
Số sách và vở lớp 9B ủng hộ : 2(x-90) (quyển)
Do cả hai lớp ủng hộ được 222 quyển sách và vở nên ta có phương trình
3x + 2(x-90) = 222
\(\Leftrightarrow3x+2x-180=222\)
\(\Leftrightarrow5x=402\)
(đoạn này thì ra lẻ nên e ko tính đc ạ)
Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:
Hai lớp 9A; 9B của một trường Trung học cơ sở có 90 học sinh. Trong đợt quyên góp sách vở ủng hộ học sinh vùng lũ lụt, mỗi bạn lớp 9A ủng hộ 3 quyển, mỗi bạn lớp 9B ủng hộ 2 quyển. Tính số học sinh của mỗi lớp biết rằng cả hai lớp ủng hộ được 222 quyển sách và vở.
Giải
Gọi số học sinh lớp 9A là x (x là số tự nhiên, x < 90)
=> Số học sinh lớp 9B: 90 - x (học sinh)
Số sách và vở lớp 9A quyên góp: 3x (quyển)
Số sách và vở lớp 9B ủng hộ : 2(90-x) (quyển)
Do cả hai lớp ủng hộ được 222 quyển sách và vở nên ta có phương trình
3x + 2(90-x) = 222
=> 3x + 180 - 2x = 222
=> x + 180 = 222
=> x = 42 (tmđk)
Vậy lớp 9A có 42 học sinh
lớp 9B có 90 - 40 = 48 học sinh
Sửa đề: \(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}\)
a) Ta có: \(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}\)
\(=\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)^2}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)
\(=\dfrac{x-1}{x}\)
b) Sửa đề: \(2\sqrt{x+1}=5\)
Ta có: \(2\sqrt{x+1}=5\)
\(\Leftrightarrow\sqrt{x+1}=\dfrac{5}{2}\)
\(\Leftrightarrow x+1=\dfrac{25}{4}\)
hay \(x=\dfrac{21}{4}\)(thỏa ĐK)
Thay \(x=\dfrac{21}{4}\) vào biểu thức \(P=\dfrac{x-1}{x}\), ta được:
\(P=\left(\dfrac{21}{4}-1\right):\dfrac{21}{4}=\dfrac{17}{4}\cdot\dfrac{4}{21}=\dfrac{17}{21}\)
Vậy: Khi \(2\sqrt{x+1}=5\) thì \(P=\dfrac{17}{21}\)
c) Để \(P>\dfrac{1}{2}\) thì \(P-\dfrac{1}{2}>0\)
\(\Leftrightarrow\dfrac{x-1}{x}-\dfrac{1}{2}>0\)
\(\Leftrightarrow\dfrac{2\left(x-1\right)}{2x}-\dfrac{x-1}{2x}>0\)
mà \(2x>0\forall x\) thỏa mãn ĐKXĐ
nen \(2\left(x-1\right)-x+1>0\)
\(\Leftrightarrow2x-2-x+1>0\)
\(\Leftrightarrow x-1>0\)
hay x>1
Kết hợp ĐKXĐ, ta được: x>1
Vậy: Để \(P>\dfrac{1}{2}\) thì x>1
`a)ĐK:` \(\begin{cases}x \ge 0\\x-\sqrt{x} \ne 0\\x-1 \ne 0\\\end{cases}\)
`<=>` \(\begin{cases}x \ge 0\\x \ne 0\\x \ne 1\\\end{cases}\)
`<=>` \(\begin{cases}x>0\\x \ne 1\\\end{cases}\)
`b)A=(sqrtx/(sqrtx-1)-1/(x-sqrtx)):(1/(1+sqrtx)+2/(x-1))`
`=((x-1)/(x-sqrtx)):((sqrtx-1+2)/(x-1))`
`=(x-1)/(x-sqrtx):(sqrtx+1)/(x-1)`
`=(sqrtx+1)/sqrtx:1/(sqrtx-1)`
`=(x-1)/sqrtx`
`c)A>0`
Mà `sqrtx>0AAx>0`
`<=>x-1>0<=>x>1`
a, ĐKXĐ : \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)
b, Ta có : \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\left(\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}:\dfrac{1}{\sqrt{x}-1}=\dfrac{x-1}{\sqrt{x}}\)
c, Ta có : \(A>0\)
\(\Leftrightarrow x-1>0\)
\(\Leftrightarrow x>1\)
Vậy ...
a) ĐKXĐ: \(x>0;x\ne4\)
\(Q=\left(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\right):\left(\dfrac{1}{\sqrt{x}}-\dfrac{1}{\sqrt{x}+1}\right)\)
\(=\left[\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}-\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\right]:\dfrac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-1-\left(x-4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}:\dfrac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\dfrac{3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\cdot\sqrt{x}\left(\sqrt{x}+1\right)\)
\(=\dfrac{3\sqrt{x}}{\sqrt{x}-2}\)
b) Để biểu thức \(Q\) có giá trị âm thì \(\dfrac{3\sqrt{x}}{\sqrt{x}-2}< 0\)
\(\Rightarrow\sqrt{x}-2< 0\) (vì \(3\sqrt{x}>0\forall x>0;x\ne4\))
\(\Leftrightarrow\sqrt{x}< 2\Leftrightarrow0\le x< 4\)
Kết hợp với điều kiện xác định của \(x\), ta được: \(0< x< 4\)
\(\text{#}\mathit{Toru}\)
a) Để biểu thức M có nghĩa thì \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
b) \(M=\frac{2}{\sqrt{x}-1}+\frac{2\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}+\frac{x-10\sqrt{x}+3}{\sqrt{x^3}-1}=\frac{2\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{2\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{x-10\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{2x+2\sqrt{x}+2+2x-2+x-10\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{5x-8\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)\left(5\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{5\sqrt{x}-3}{x+\sqrt{x}+1}\)c) Ta có \(M=\frac{5\sqrt{x}-3}{x+\sqrt{x}+1}\Leftrightarrow Mx+M\sqrt{x}+M-5\sqrt{x}+3=0\Leftrightarrow Mx+\left(M-5\right)\sqrt{x}+\left(M+3\right)=0\)Để phương trình có nghiệm( hay có giá trị x) thì \(\left(M-5\right)^2-4.M.\left(M+3\right)\ge0\Leftrightarrow M^2-10M+25-4M^2-12M\ge0\Leftrightarrow3M^2+22M-25\le0\Leftrightarrow\left(M-1\right)\left(3M+25\right)\le0\Leftrightarrow\)\(-\frac{25}{3}\le M\le1\)
Vậy M có GTLN khi \(\frac{5\sqrt{x}-3}{x+\sqrt{x}+1}=1\Leftrightarrow x+\sqrt{x}+1=5\sqrt{x}-3\Leftrightarrow x-4\sqrt{x}+4=0\Leftrightarrow\left(\sqrt{x}-2\right)^2=0\Leftrightarrow\sqrt{x}-2=0\Leftrightarrow x=4\)
Vậy để biểu thức M có GTLN là 1 thì x=4