Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q\le\sqrt{3\left(a+b+b+c+c+a\right)}=\sqrt{6\left(a+b+c\right)}\le\sqrt{6.\sqrt{3\left(a^2+b^2+c^2\right)}}=\sqrt{6\sqrt{3}}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)
Lại có:
\(a^2+b^2+c^2\le1\Rightarrow0\le a;b;c\le1\)
\(\Leftrightarrow a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)\le0\)
\(\Leftrightarrow a+b+c\ge a^2+b^2+c^2=1\)
Do đó:
\(Q^2=2\left(a+b+c\right)+2\sqrt{a^2+ab+bc+ca}+2\sqrt{b^2+ab+bc+ca}+2\sqrt{c^2+ab+bc+ca}\)
\(Q^2\ge2\left(a+b+c\right)+2\sqrt{a^2}+2\sqrt{b^2}+2\sqrt{c^2}\)
\(Q^2\ge4\left(a+b+c\right)\ge4\)
\(\Rightarrow Q\ge2\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và hoán vị
\(Q=ac+bc-2022ab\le ac+bc=c\left(a+b\right)\le\dfrac{1}{4}\left(c+a+b\right)^2=\dfrac{1}{4}\)
\(Q_{max}=\dfrac{1}{4}\) khi \(\left\{{}\begin{matrix}a+b+c=1\\ab=0\\c=a+b\end{matrix}\right.\) \(\Leftrightarrow\left(a;b;c\right)=\left(0;\dfrac{1}{2};\dfrac{1}{2}\right);\left(\dfrac{1}{2};0;\dfrac{1}{2}\right)\)
\(Q=c\left(a+b\right)-2022ab\ge c\left(a+b\right)-\dfrac{1011}{2}\left(a+b\right)^2\)
\(Q\ge c\left(1-c\right)-\dfrac{1011}{2}\left(1-c\right)^2\)
\(Q\ge c\left(1-c\right)-\dfrac{1011}{2}c\left(c-2\right)-\dfrac{1011}{2}\)
\(Q\ge\dfrac{c\left(1011+1013\left(1-c\right)\right)}{2}-\dfrac{1011}{2}\ge-\dfrac{1011}{2}\)
\(Q_{min}=-\dfrac{1011}{2}\) khi \(\left(a;b;c\right)=\left(\dfrac{1}{2};\dfrac{1}{2};0\right)\)
Lời giải:
Do $b\leq c; a^2\geq 0$ nên $a^2(b-c)\leq 0$
$\Rightarrow Q\leq b^2(c-b)+c^2(1-c)$
Áp dụng BĐT AM-GM:
\(b^2(c-b)=4.\frac{b}{2}.\frac{b}{2}(c-b)\leq 4\left(\frac{\frac{b}{2}+\frac{b}{2}+c-b}{3}\right)^3=\frac{4}{27}c^3\)
\(\Rightarrow Q\leq c^2-\frac{23}{27}c^3=c^2(1-\frac{23}{27}c)=(\frac{54}{23})^2.\frac{23}{54}c.\frac{23}{54}c(1-\frac{23}{27}c)\leq (\frac{54}{23})^2\left(\frac{\frac{23}{54}c+\frac{23}{54}c+1-\frac{23}{27}c}{3}\right)^3=\frac{108}{529}\)
Vậy $Q_{max}=\frac{108}{529}$
Giá trị này đạt tại $(a,b,c)=(0,\frac{12}{23}, \frac{18}{23})$
Lời giải:
Do $b\leq c; a^2\geq 0$ nên $a^2(b-c)\leq 0$
$\Rightarrow Q\leq b^2(c-b)+c^2(1-c)$
Áp dụng BĐT AM-GM:
\(b^2(c-b)=4.\frac{b}{2}.\frac{b}{2}(c-b)\leq 4\left(\frac{\frac{b}{2}+\frac{b}{2}+c-b}{3}\right)^3=\frac{4}{27}c^3\)
\(\Rightarrow Q\leq c^2-\frac{23}{27}c^3=c^2(1-\frac{23}{27}c)=(\frac{54}{23})^2.\frac{23}{54}c.\frac{23}{54}c(1-\frac{23}{27}c)\leq (\frac{54}{23})^2\left(\frac{\frac{23}{54}c+\frac{23}{54}c+1-\frac{23}{27}c}{3}\right)^3=\frac{108}{529}\)
Vậy $Q_{max}=\frac{108}{529}$
Giá trị này đạt tại $(a,b,c)=(0,\frac{12}{23}, \frac{18}{23})$
Do \(a^2+b^2+c^2=1\Rightarrow0\le a;b;c\le1\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a-1\right)\left(b-1\right)\left(c-1\right)\le0\\b^{2011}\le b\\c^{2011}\le c\end{matrix}\right.\)
\(\Rightarrow T\le a+b+c-ab-bc-ca=\left(a-1\right)\left(b-1\right)\left(c-1\right)+1-abc\le1-abc\le1\)
\(T_{max}=1\) khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và các hoán vị
Ta có: \(a^2+b^2=4\left(gt\right)\Rightarrow2ab=\left(a+b\right)^2-4\)
\(\Rightarrow2M=\frac{\left(a+b\right)^2-4}{a+b+2}=a+b-2\)
Mà \(a+b\le\sqrt{2\left(a^2+b^2\right)}=2\sqrt{2}\)
\(\Rightarrow M\le\sqrt{2}-1\)
Dấu \("="\Leftrightarrow a=b=\sqrt{2}\)
Vậy GTLN của \(M=\frac{ab}{a+b+2}=\sqrt{2}-1\)khi \(a=b=\sqrt{2}\)
Ta có a2+b2=4
<=> (a+b)2=4+2ab
<=> (a+b)2-4=2ab
<=> (a+b-2)(a+b+2)=2ab
<=> \(\frac{\left(a+b-2\right)\left(a+b+2\right)}{2}=ab\)
Ta có \(M=\frac{ab}{a+b+2}=\frac{\left(a+b+2\right)\left(a+b-2\right)}{2\left(a+b+2\right)}=\frac{a+b-2}{2}=\frac{a}{2}+\frac{b}{2}-1\)
Áp dụng BĐT Bunyakovsky cho 2 số a/2 và b/2 ta có
\(\left(\frac{a}{2}+\frac{b}{2}\right)^2\le\left(\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^2\right)\left(a^2+b^2\right)\)
\(\Leftrightarrow\left(\frac{a}{2}+\frac{b}{2}\right)^2\le\frac{1}{2}.4\left(doa^2+b^2=4\right)\)
\(\Leftrightarrow\left(\frac{a}{2}+\frac{b}{2}\right)^2\le2\)
\(\Rightarrow\frac{a}{2}+\frac{b}{2}\le\sqrt{2}\)
Do đó \(M=\frac{a}{2}+\frac{b}{2}-1\le\sqrt{2}-1\)
Vậy Max M = \(\sqrt{2}-1\)
1
Áp dụng BĐT Cauchy cho 2 số dương:
4ac=2.b.2c≤2(b+2c2)2≤2(a+b+2c2)2=2.(12)2=12
⇒−4bc≥−12
⇒K=ab+4ac−4bc≥−4bc≥−12