K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2018

ĐKXĐ : \(x\ne2;x\ne0\)

a) \(E=\frac{x^2}{x-2}\cdot\left(\frac{x^2+4}{x}-4\right)+3\)

\(E=\frac{x^2}{x-2}\cdot\left(\frac{x^2+4-4x}{x}\right)+3\)

\(E=\frac{x^2}{x-2}\cdot\frac{\left(x-2\right)^2}{x}+3\)

\(E=\frac{x^2\left(x-2\right)^2}{\left(x-2\right)x}+3\)

\(E=x\left(x-2\right)+3\)

b) Để E = 2 thì \(x\left(x-2\right)+3=2\)

\(\Leftrightarrow x^2-2x+3-2=0\)

\(\Leftrightarrow x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\)

c) Ta có :

\(E=x\left(x-2\right)+3\)

\(E=x^2-2x+3\)

\(E=x^2-2x+1+2\)

\(E=\left(x-1\right)^2+2\ge2\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)

10 tháng 12 2018

\(E=\frac{x^2}{x-2}.\left(\frac{x^2+4}{x}-4\right)+3\)\(ĐK:x\ne2;x\ne0\))

\(=\frac{x^2}{x-2}.\frac{x^2-4x+4}{x}+3\)

\(=\frac{x^2}{x-2}.\frac{\left(x-2\right)^2}{x}+3=x\left(x-2\right)+3=x^2-2x+3\)

b, \(E=x^2-2x+3=\left(x-1\right)^2+2\ge2\forall x\)

Dấu "=" xảy ra khi \(x-1=0\Rightarrow x=1\)

Vậy GTNN của E là 2 khi x = 1

25 tháng 3 2018

d)  \(A>0\Leftrightarrow\frac{-1}{x-2}>0\)

\(\Leftrightarrow x-2< 0\)  ( vì \(-1< 0\))

\(\Leftrightarrow x< 2\)

25 tháng 3 2018

\(A=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)

\(A=\)\(\left[\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right]\)

  \(:\left[\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{10-x^2}{x+2}\right]\)

\(A=\frac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}:\left[\frac{x^2-4+10-x^2}{x+2}\right]\)

\(A=\frac{-6}{\left(x-2\right)\left(x+2\right)}:\frac{6}{x+2}\)

\(A=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{6}\)

\(A=\frac{-1}{x-2}\)

29 tháng 12 2017

\(E=\left(\frac{x-2}{x^2-1}-\frac{x+2}{x^2+2x+1}\right).\left(\frac{1-x^2}{2}\right)^2\)

\(E=\left(\frac{x-2}{\left(x-1\right)\left(x+1\right)}-\frac{x-2}{\left(x+1\right)^2}\right).\left(\frac{\left(1-x\right)\left(1+x\right)}{2}\right)^2\)

\(E=\left(\frac{\left(x+1\right)\left(x-2\right)}{\left(x-1\right)\left(x+1\right)^2}-\frac{\left(x-2\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)^2}\right).\frac{\left(1-x\right)^2\left(x+1\right)^2}{4}\)

\(E=\frac{\left(x-2\right)\left(x+1-x+1\right)}{\left(x-1\right)\left(x+1\right)^2}.\frac{\left(x-1\right)^2\left(x+1\right)^2}{4}\)

\(E=\frac{2\left(x-2\right)\left(x-1\right)}{4}\)

\(E=\frac{\left(x-2\right)\left(x-1\right)}{2}\)

29 tháng 12 2017

a) \(E=\left(\frac{x-2}{x^2-1}-\frac{x+2}{x^2+2x+1}\right).\left(\frac{1-x^2}{2}\right)^2\)

   \(=\left(\frac{x-2}{\left(x-1\right)\left(x+1\right)}-\frac{x+2}{\left(x+1\right)^2}\right).\frac{\left(x^2-1\right)^2}{4}\)

\(=\left(\frac{\left(x-2\right)\left(x-1\right)}{\left(x-1\right)^2\left(x+1\right)}-\frac{\left(x+2\right)\left(x+1\right)}{\left(x-1\right)^2\left(x+1\right)}\right).\frac{\left(x^2-1\right)^2}{4}\)

\(=\left(\frac{x^2-3x+2-x^2-3x-2}{\left(x-1\right)^2\left(x+1\right)}\right).\frac{\left(x^2-1\right)^2}{4}\)

\(=\frac{-6x.\left(x^2-1\right)^2}{\left(x-1\right)^2\left(x+1\right).4}=\frac{-3x\left(x^2-1\right)^2}{\left(x^2-1\right)\left(x-1\right).4}=\frac{-3x\left(x-1\right)\left(x+1\right)}{\left(x-1\right).4}\)\(=\frac{-3x\left(x+1\right)}{4}\)

b) Muốn    \(\frac{E-4}{5}=x\) thì   \(\frac{\frac{-3x\left(x+1\right)}{4}-4}{5}=x\)

\(\Rightarrow\frac{\frac{-3x^2\left(x+1\right)}{4}-\frac{16}{4}}{5}=x\)

\(\Rightarrow\frac{-3x^3-3x^2-16}{4}=5x\)

\(\Rightarrow-3x^3-3x^2-16=20x\)

\(\Rightarrow-3x^3-3x^2-16=20x\).....................................................................

18 tháng 8 2020

a) ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x\ne-2\end{cases}}\)

\(N=\frac{\left(x+2\right)^2}{x}.\left(1-\frac{x^2}{x+2}\right)-\frac{x^2+6x+4}{x}\)

\(N=\frac{\left(x+2\right)^2}{x}.\frac{x+2-x^2}{x+2}-\frac{x^2+6x+4}{x}\)

\(N=\frac{\left(x+2\right)\left(x+2-x^2\right)-x^2-6x-4}{x}\)

\(N=\frac{x^2+2x-x^3+2x+4-2x^2-x^2-6x-4}{x}\)

\(N=\frac{-x^3-2x^2-2x}{x}\)

\(N=\frac{-x\left(x^2+2x+2\right)}{x}\)

\(N=-\left(x^2+2x+2\right)\)

b) \(N=-\left(x^2+2x+2\right)\)

\(\Leftrightarrow N=-\left(x^2+2x+1+1\right)\)

\(\Leftrightarrow N=-\left(x+1\right)^2-1\le-1\)

Max N = -1 \(\Leftrightarrow x=-1\)

Vậy .......................

25 tháng 12 2020

a, \(A=\left(\frac{4}{2x+1}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)

\(=\left(\frac{4\left(x^2+1\right)}{\left(2x+1\right)\left(x^2+1\right)}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)

\(=\left(\frac{4x^2+4+4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)

\(=\frac{\left(2x+1\right)^2}{\left(x^2+1\right)\left(2x+1\right)}\frac{x^2+1}{x^2+2}=\frac{2x+1}{x^2+2}\)

13 tháng 12 2019

a

\(ĐKXĐ:x\in R\)

\(A=\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right)\left(x^4+\frac{1-x^4}{1+x^2}\right)\)

\(A=\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right)\left(x^4-x^2+1\right)\)

\(=\frac{\left(x^2-1\right)\left(x^4-x^2+1\right)}{x^4-x^2+1}-\frac{x^4-x^2+1}{x^2+1}\)

\(=x^2-1-\frac{x^4-x^2+1}{x^2+1}\)

\(=-1+\frac{x^4+x^2-x^4+x^2+1}{x^2+1}\)

\(=\frac{2x^2+1}{x^2+1}-1=\frac{2x^2+1-x^2-1}{x^2+1}=\frac{x^2}{x^2+1}\)

b

Xét \(x>0\Rightarrow M>0\)

Xét \(x=0\Rightarrow M=0\)

Xét \(x< 0\Rightarrow M>0\)

Vậy \(M_{min}=0\) tại \(x=0\)