Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số tự nhiên đó là \(n\).
Ta có: \(n\)chia cho \(5\)dư \(3\)nên \(2\times n\)chia cho \(5\)dư \(6\)nên \(2\times n-1\)chia hết cho \(5\).
\(n\)chia cho \(9\)dư \(5\)nên \(2\times n\)chia cho \(9\)dư \(10\)nên \(2\times n-1\)chia hết cho \(9\).
Suy ra \(2\times n-1\)chia hết cho \(5\times9=45\).
\(800< n< 900\Leftrightarrow1599< 2\times n-1< 1799\)
Có \(1799=39\times45+44\)mà \(n\)lớn nhất nên \(2\times n-1=39\times45\Leftrightarrow n=878\).
ok để 23 ab chia hết cho 2 và 5 thì b = 0
để 23a0 chia hết cho 3 thì tổng 2+3+a+0 = 5 + a phải chia hết cho 3
a= 1;4;7
thay vào ta được số 2310; 2340; 2370 .
Để thoả mãn số a chia 2 dư 1, chia 5 dư 1, chia 7 dư 1 thì a là 2 x 5 x 7 + 1 = 71
(Giải thích: (phần này k ghi nhé) nếu một số chia hết cho vài số nào đó và số đó cần là số bé nhất => số đó chính là tích của các số là ước của nó)
Mà số này chia hết cho 9 nên số a tối thiểu là 71 x 9 = 639
Đáp số: 639
Ta có : a chia 2 dư 1
⇒a có chữ số tận cùng là 1; 3; 5; 7; 5
a chia 5 dư 1
⇒a có chữ số tận cùng là 1; 6
Từ 3 điều trên
⇒a có chữ số tận cùng là 1
a chia 7 dư 3
N chia 5 dư 3 => y là 3 hoặc 8
mà N chia 2 dư 1 => y là 3
N chia hết cho 9 , khi đó: 3 + x + 5 + 3 chia hết 9 <=> 11 + x chia hết 9
=> x = 7
Vậy N: 3753
\(N\div2\) (dư 1) \(\Rightarrow N\) là số lẻ \(\Rightarrow y\left\{1;3;5;7;9\right\}\)
\(N\div5\) (dư 3) \(\Rightarrow y\in\left\{3;8\right\}\). Nhưng vì N là số lẻ => y = 3
Vậy ta có số mới là: \(\overline{3x53}\)
\(N⋮9\Rightarrow3+x+5+3=\left(11+x\right)⋮9\Rightarrow x=7\\ \Rightarrow N=3753\)
Để 2x7y \(⋮\)5
=> y = 0 hoặc y = 5
Khi đó 2x7y = 2x70 ; 2x7y = 2x75
Để 2x70 \(⋮9\)
=> (2 + x + 7 + 0) \(⋮9\)
=> (x + 9) \(⋮9\)
=> \(x=0;x=9\left(\text{Vì }0\le x\le9\right)\)
Để 2x75 \(⋮9\)
=> (2 + x + 7 + 5) \(⋮9\)
=> (14 + x) \(⋮9\)
=> x = 4
Vậy các cặp số (x;y) thỏa mãn để 2x7y chia hết cho 9 và 5 là
(0 ; 0) ; (9 ; 0) ; (4 ; 5)
2) Để a689b \(⋮\)2
=> b = 0 ; b = 2 ; b = 4 ; b = 6 ; b = 8
Để a689b \(⋮\)5
=> b = 0 ; b = 5
Để a689b \(⋮\)2 ; 5
=> b = 0
Khi đó số mới là a6890
a6890 \(⋮\)3 <=> (a + 6 + 8 + 9 + 0) \(⋮\)3
=> (a + 23) \(⋮\)3
=> a = 1 ; a = 4 ; a = 7 (Vì 0 < a < 10)
Vì a6890 không chia hết cho 9
=> a = 1 ; a = 7
Vậy các cặp số (a ; b) thỏa mãn bài toán là (1 ; 0) ; (7 ; 0)
Câu 3 :
Để 43x28y \(⋮\)45
=> 43x28y \(⋮\)5 và 43x28y \(⋮\)9
+) 43x28y \(⋮\)5 khi y = 0 hoặc y = 5
Khi đó số mới là 43x280 hoặc 43x285
Để 43x280 \(⋮\)9
=> (4 + 3 + x + 2 + 8 + 0) \(⋮\)9
=> (17 + x) \(⋮\)9
=> x = 1 (Vì \(0\le x\le9\))
Vậy các cặp số (x;y) thỏa mãn bài toán là : (1 ; 0) ; (1 ; 5)
Để A tăng ít nhất thì thêm vào A 1 chữ số.
Ta thấy để A chia hết cho 45 thì A chia hết cho 5 và 9.
Do A chia hết cho 9 nên các chữ số thêm vào A chia hết cho 9. Suy ra chữ số đó là 0 hoặc 9.
Chữ số này phải thêm vào cuối thì A mới chia hết cho 5. Do đó chữ số này là 0 và A tăng thêm số đơn vị là: \(999...90-999...9=899..91\) (2016 chữ số 9)
Nếu số b muốn chia hết cho 2 và 5 thì chắc chắn b = 0
Vậy ta được số 57a20
Xét nếu chia hết cho 3 thì ta có: ( 5 + 7 + a+ 2 + 0 ) = 11 => có các số thích hợp với a = 1 và 4
Vậy ta có số 57120 và 57420