Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,đkxđ\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)
\(A=\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{3}{\sqrt{x}+2}-\frac{9\sqrt{x}-10}{x-4}.\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)\(-\frac{9\sqrt{x}-10}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x+2\sqrt{x}+3\sqrt{x}-6-9\sqrt{x}+10}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x-4\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}-2}{\sqrt{x}+2}\)
\(b,x=4-2\sqrt{3}=3-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)
\(\Rightarrow x=\sqrt{3}-1\)
\(\Rightarrow A=\frac{\sqrt{3}-1-2}{\sqrt{3}-1+2}=\frac{\sqrt{3}-3}{\sqrt{3}-1}\)
\(b,A=\frac{\sqrt{x}-2}{\sqrt{x}+2}=\frac{\sqrt{x}+2-4}{\sqrt{x}+2}\)\(=1-\frac{4}{\sqrt{x}+2}\)
\(A\in Z\Leftrightarrow1-\frac{4}{\sqrt{x}+2}\in Z\Rightarrow\frac{4}{\sqrt{x}+2}\in Z\)
\(\Rightarrow\sqrt{x}+2\inƯ_4\)
Mà \(Ư_4=\left\{\pm1;\pm2;\pm4\right\}\)Nhưng \(\sqrt{x}+2\ge2\)\(\Rightarrow\sqrt{x}+2\in\left\{2;4\right\}\)
\(Th1:\sqrt{x}+2=2\Rightarrow\sqrt{x}=0\Rightarrow x=0\)
\(Th2:\sqrt{x}+2=4\Rightarrow\sqrt{x}=2\Rightarrow x=4\)
\(KL:x\in\left\{0;4\right\}\)
\(a,A=\frac{2}{\sqrt{x}-3}+\frac{2\sqrt{x}}{x-4\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-1}\)
\(A=\frac{2\sqrt{x}-2+2\sqrt{x}+x-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)
\(A=\frac{x+\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)
\(A=\frac{x-\sqrt{x}+2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)
\(A=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)
\(A=\frac{\sqrt{x}+2}{\sqrt{x}-3}\)
\(b,A=\frac{\sqrt{x}-3+5}{\sqrt{x}-3}=1+\frac{5}{\sqrt{x}-3}\)
để A nguyên \(5⋮\sqrt{x}-3\)
lập bảng ra đc
\(x=\left\{2\right\}\)
a) \(A=\left(\frac{x+3}{x-9}+\frac{1}{\sqrt{x}+3}\right):\frac{\sqrt{x}}{\sqrt{x}-3}\)
\(=\left[\frac{x+3+\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]:\frac{\sqrt{x}}{\sqrt{x}-3}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}+3}\)
c) để A>1/3
\(\Rightarrow\frac{\sqrt{x}+3-2}{\sqrt{x}+3}>\frac{1}{3}\)
\(\Rightarrow\frac{2}{\sqrt{x}+3}>\frac{2}{3}\)
\(\Rightarrow\sqrt{x}+3>3\)
\(\Rightarrow x>0\)
a.
\(A=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{9\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ =\frac{x+2\sqrt{x}+3\sqrt{x}-6-9\sqrt{x}+10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ =\frac{x-4\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ =\frac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ =\frac{\sqrt{x}-2}{\sqrt{x}+2}\)
b. Ta có
\(\sqrt{x}=\sqrt{4-2\sqrt{3}}=\sqrt{3-2\cdot\sqrt{3}\cdot1+1}=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)
Thay vào A ta được
\(A=\frac{\sqrt{x}-2}{\sqrt{x}+2}\\ =\frac{\sqrt{3}-1-2}{\sqrt{3}-1+2}\\ =\frac{\sqrt{3}-3}{\sqrt{3}+1}\\ =\frac{\left(\sqrt{3}-3\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\\ =\frac{6-4\sqrt{3}}{2}=3-2\sqrt{3}\)
c. \(A=\frac{\sqrt{x}-2}{\sqrt{x}+2}=\frac{\sqrt{x}+2-4}{\sqrt{x}+2}=1-\frac{4}{\sqrt{x}+2}\)
Để \(A\in Z\Leftrightarrow4⋮\sqrt{x}+2\Leftrightarrow\sqrt{x}+2\inƯ\left(4\right)\)
Ta thấy \(\sqrt{x}\ge0\forall x\ge0\left(ĐK\right)\Leftrightarrow\sqrt{x}+2\ge2\)
Nên \(\sqrt{x}+2\in\left\{2;4\right\}\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+2=2\\\sqrt{x}+2=4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}=2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=4\left(ktm\right)\end{matrix}\right.\)
Vậy x=0 thì A thuộc Z