Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2006-x}{6-x}=1+\frac{2000}{6-x}\)
Để \(1+\frac{2000}{6-x}\) đạt GTLN <=> \(\frac{2000}{6-x}\) đạt GTLN
Mà x nguyên => 6 - x là số nguyên dương nhỏ nhất Tức là 6 - x = 1 => x = 5
Vậy GTNN của A là \(\frac{2006-5}{6-5}=2001\) tại x = 5
x=5;A=2001
tự tìm hiểu cách giải nha.Tiện thể tôi không phải là uzumaki naruto đâu
\(A=\frac{2006-x}{6-x}=1\frac{2000}{6-x}\)
=> để A đạt gia trị lớn nhất thì 6-x phải đạt giá trị nhỏ nhất (>0) và x khác 6
A lớn nhất khi 6-x nên => 6-x=1
=> x=5
giá trị lớn nhất của A khi đó là:
A=(2006-5)/(6-5)=2001
\(A=\frac{2000+6-x}{6-x}=1+\frac{2000}{6-x}\)
A đạt GTLN \(\Leftrightarrow\frac{2000}{6-x}\)đạt GTLN
\(\frac{2000}{6-x}\)đạt GTLN \(\Leftrightarrow6-x\) đạt GTNN
Ta có \(6-x\ge1\)
Dấu = xảy ra \(\Leftrightarrow x=5\)
Do đó GTLN của A \(=1+\frac{2000}{1}=2001\)
Vậy GTLN của A là 2001 \(\Leftrightarrow x=5\)
Lời giải:
a. Tại $x=\frac{1}{2}=0,5$ thì $A=\frac{2014-0,5}{2015-0,5}=\frac{4027}{4029}$
Tại $x=\frac{-1}{2}=-0,5$ thì $A=\frac{2014+0,5}{2015+0,5}=\frac{4029}{4031}$
b. $A=\frac{2015-x-1}{2015-x}=1-\frac{1}{2015-x}=1+\frac{1}{x-2015}$
Để $A$ max thì $\frac{1}{x-2015}$ max
$\Rightarrow x-2015 là số nguyên dương nhỏ nhất
$\Rightarrow x-2015=1$
$\Rightarrow x=2016$
A nhỏ nhất khi \(\frac{3}{x-1}\) nhỏ nhất
=> x - 1 lớn nhất
=> x là số dương vô cùng đề sai nhá
a) \(A=\dfrac{3}{x-1}\)
Điều kiện \(|x-1|\ge0\)
\(\Rightarrow A=\dfrac{3}{x-1}\ge0\)
\(GTNN\left(A\right)=0\) \(\Rightarrow x-1=+\infty\Rightarrow x\rightarrow+\infty\)
b) \(GTLN\left(A\right)\) không có \(\left(A=\dfrac{3}{x-1}\ge0\right)\)
\(A=\frac{2020}{9-x}\left(x\ne9\right)\)
Để A đạt GTLN thì 9-x bé nhất
=> 9-x=1
=> x=8
Vậy \(A_{max}=\frac{2020}{9-8}=2020\)tại x=8
Hok Tốt !!!!!!!!!!!!!!
\(A=\frac{2020}{9-x}\)
A đạt giá trị lớn nhất
\(\Leftrightarrow\frac{2020}{9-x}\) lớn nhất
\(9-x\) nhỏ nhất ( vì 2020 là hằng số )
Vì 9 - x khác 0
\(\Rightarrow9-x=1\)
\(x=9-1\)
\(x=8\)
\(A=\frac{2020}{9-x}=\frac{2020}{9-8}=2020\)
Vật Giá trị lớn nhất cả A là 2020 khi và chỉ khi x = 8
bài 2
Ta có:
\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)
Trường hợp 1: \(x-102>0\Rightarrow x>102\)
\(2-x>0\Rightarrow x< 2\)
\(\Rightarrow102< x< 2\left(loại\right)\)
Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)
\(2-x< 0\Rightarrow x>2\)
\(\Rightarrow2< x< 102\left(nhận\right)\)
Vậy GTNN của A là -100 đạt được khi 2<x<102.
Ta có: Để A đạt giá trị lớn nhất
<=> \(\frac{2015}{9-x}\)đạt giá trị lớn nhất
<=> 9 - x đạt giá trị nhỏ nhất
<=> 9 - x = 1 <=> x = 8
Thay x = 8 vào biểu thức A, ta được
A = \(\frac{2015}{9-8}=\frac{2015}{1}=2015\)
Vậy Max của A = 2015 tại x = 8
mình nghĩ Edogawa Conan nên lý luận chỗ để \(\frac{2015}{9-x}\)đạt giá trị lớn nhất thì
<=> 9-x là ước nguyên dương nhỏ nhất của 8
lý luận như Edogawa Conan thì 9-x=-2015