Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Xét tử thức:
\(\frac{x-\sqrt{x}}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}}=\frac{\sqrt{x}(\sqrt{x}-1)}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{\sqrt{x}(\sqrt{x}+1)}=\sqrt{x}-\frac{1}{\sqrt{x}}=\frac{x-1}{\sqrt{x}}\)
\(\Rightarrow C=\frac{x-1}{\sqrt{x}}: \frac{\sqrt{x}+1}{x}=\frac{(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}}.\frac{x}{\sqrt{x}+1}=\sqrt{x}(\sqrt{x}-1)\)
\( \left( \dfrac{ 1 }{ \sqrt{ x \phantom{\tiny{!}}} -1 } - \dfrac{ 1 }{ \sqrt{ x \phantom{\tiny{!}}} } \right) \left( \dfrac{ \sqrt{ x \phantom{\tiny{!}}} +1 }{ \sqrt{ x \phantom{\tiny{!}}} -2 } - \dfrac{ \sqrt{ x \phantom{\tiny{!}}} +2 }{ \sqrt{ x \phantom{\tiny{!}}} -1 } \right) \)
\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\left(\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\left(\dfrac{x-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\dfrac{x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{3}{\sqrt{x}\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)^2}\)
\( \dfrac{ 1 }{ \sqrt{ x \phantom{\tiny{!}}} -3 } + \dfrac{ 4 }{ \sqrt{ x \phantom{\tiny{!}}} +3 } - \dfrac{ 9- \sqrt{ x \phantom{\tiny{!}}} }{ x-9 } \)(ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >9\end{matrix}\right.\))
\(=\dfrac{1}{\sqrt{x}-3}+\dfrac{4}{\sqrt{x}+3}+\dfrac{\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}+3+4\left(\sqrt{x}-3\right)+\sqrt{x}-9}{\left(\sqrt{x}-3\right)\cdot\left(\sqrt{x}+3\right)}\)
\(=\dfrac{2\sqrt{x}-6+4\sqrt{x}-12}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{6\sqrt{x}-18}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=6\cdot\dfrac{\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{6}{\sqrt{x}+3}\)
Ta có: \(\sqrt{48-2\sqrt{135}}-\sqrt{45}+\sqrt{18}\)
\(=\sqrt{45-2\cdot\sqrt{45}\cdot\sqrt{3}+3}-\sqrt{45}+\sqrt{18}\)
\(=\sqrt{\left(\sqrt{45}-\sqrt{3}\right)^2}-\sqrt{45}+\sqrt{18}\)
\(=\sqrt{45}-\sqrt{3}-\sqrt{45}+\sqrt{18}\)
\(=\sqrt{18}-\sqrt{3}\)
a) ĐKXĐ : \(x\sqrt{x}-1\ge0\Leftrightarrow x\ge1\)
b) \(B=\left(\dfrac{2x+1}{x\sqrt{x}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right).\left(\dfrac{1+x\sqrt{x}}{1+\sqrt{x}}-\sqrt{x}\right)\)
\(=\dfrac{2x+1-\sqrt{x}.\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)}.\left(x-2\sqrt{x}+1\right)\)
\(=\dfrac{1}{\sqrt{x}-1}.\left(\sqrt{x}-1\right)^2=\sqrt{x}-1\)
c) Có : \(x=\dfrac{2-\sqrt{3}}{2}=\dfrac{4-2\sqrt{3}}{4}=\dfrac{\left(\sqrt{3}-1\right)^2}{4}\)
Khi đó B = \(\dfrac{\sqrt{3}-1}{2}-1=\dfrac{\sqrt{3}-3}{2}\)
\(a,\) B có nghĩa \(\Leftrightarrow\left[{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
\(b,B=\left(\dfrac{2x+1}{x\sqrt{x}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{1+x\sqrt{x}}{1+\sqrt{x}}-\sqrt{x}\right)\)
\(=\dfrac{2x+1-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{1+x\sqrt{x}-\sqrt{x}\left(1+\sqrt{x}\right)}{1+\sqrt{x}}\)
\(=\dfrac{2x+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{1+x\sqrt{x}-\sqrt{x}-x}{1+\sqrt{x}}\)
\(=\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{\sqrt{x}\left(x-1\right)-\left(x-1\right)}{1+\sqrt{x}}\)
\(=\dfrac{\left(x-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\sqrt{x}-1\)
\(c,x=\dfrac{2-\sqrt{3}}{2}\Rightarrow B=\sqrt{\dfrac{2-\sqrt{3}}{2}}-1\)
\(=\dfrac{\sqrt{2}.\sqrt{2-\sqrt{3}}}{\sqrt{2}.\sqrt{2}}-\sqrt{2}\) (Nhân \(\sqrt{2}\) để khử căn dưới mẫu)
\(=\dfrac{\sqrt{4-2\sqrt{3}}-2\sqrt{2}}{2}\)
\(=\dfrac{\sqrt{\left(\sqrt{3}-1\right)^2}-2\sqrt{2}}{2}\)
\(=\dfrac{\left|\sqrt{3}-1\right|-2\sqrt{2}}{2}\)
\(=\dfrac{\sqrt{3}-1-2\sqrt{2}}{2}\)