Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mik ko bít
I don't now
................................
.............
\(M=\frac{\frac{sina}{cosa}+\frac{cosa}{cosa}}{\frac{sina}{cosa}-\frac{cosa}{cosa}}=\frac{tana+1}{tana-1}=\frac{\frac{3}{5}+1}{\frac{3}{5}-1}=...\)
\(N=\frac{\frac{sina.cosa}{cos^2a}}{\frac{sin^2a}{cos^2a}-\frac{cos^2a}{cos^2a}}=\frac{tana}{tan^2a-1}=...\) (thay số bấm máy)
\(P=\frac{\frac{sin^3a}{cos^3a}+\frac{cos^3a}{cos^3a}}{\frac{2sina.cos^2a}{cos^3a}+\frac{cosa.sin^2a}{cos^3a}}=\frac{tan^3a+1}{2tana+tan^2a}=...\)
a) ta có : \(A=tan1.tan2.tan3...tan89\)
\(=\left(tan1.tan89\right).\left(tan2.tan88\right).\left(tan3.tan87\right)...\left(tan44.tan46\right).tan45\)
\(=\left(tan1.tan\left(90-1\right)\right).\left(tan2.tan\left(90-2\right)\right).\left(tan3.tan\left(90-3\right)\right)...\left(tan44.tan\left(90-44\right)\right).tan45\)
\(=\left(tan1.cot1\right).\left(tan2.cot2\right).\left(tan3.cot3\right)...\left(tan44.cot44\right).tan45\) \(=tan45=1\)b) ta có \(B=\dfrac{sin\alpha+2cos\alpha}{3sin\alpha-4cos\alpha}=\dfrac{\dfrac{sin\alpha}{cos\alpha}+\dfrac{2cos\alpha}{cos\alpha}}{\dfrac{3sin\alpha}{cos\alpha}-\dfrac{4cos\alpha}{cos\alpha}}\)
\(=\dfrac{tan\alpha+2}{3tan\alpha-4}=\dfrac{\dfrac{1}{2}+2}{\dfrac{3}{2}-4}=-1\)
ta có \(D=\dfrac{2sin^2\alpha-3cos^2\alpha}{4cos^2\alpha-5sin^2\alpha}=\dfrac{\dfrac{2sin^2\alpha}{cos^2\alpha}-\dfrac{3cos^2\alpha}{cos^2\alpha}}{\dfrac{4cos^2\alpha}{cos^2\alpha}-\dfrac{5sin^2\alpha}{cos^2\alpha}}\)
\(=\dfrac{2tan^2\alpha-3}{4-5tan^2\alpha}=\dfrac{2\left(\dfrac{1}{2}\right)^2-3}{4-5\left(\dfrac{1}{2}\right)^2}=\dfrac{-10}{11}\)
Lớp 9 không biết có học tới sin cos âm chưa nếu chưa thì lấy phần dương nha
\(1+tan^2a=\frac{1}{cos^2a}\)
\(1+\left(\frac{2}{3}\right)^2=\frac{1}{cos^2a}\)
\(1+\frac{4}{9}=\frac{1}{cos^2a}\)
\(\frac{13}{9}=\frac{1}{cos^2a}\)
\(cos^2a=\frac{9}{13}\)
\(cosa=\pm\sqrt{\frac{9}{13}}=\pm\frac{3\sqrt{13}}{13}\)
\(sin^2a+cos^2a=1\)
\(sin^2a+\frac{9}{13}=1\)
\(sin^2a=\frac{4}{13}\)
\(sina=\pm\sqrt{\frac{4}{13}}=\pm\frac{2\sqrt{13}}{13}\)
tan dương nên sẽ có 2 TH
TH1 sin và cos cùng dương
\(\frac{sin^3a+3cos^3a}{27sin^3a-25cos^3a}\)
\(=\frac{\left(\frac{2\sqrt{13}}{13}\right)^3+3\cdot\left(\frac{3\sqrt{13}}{13}\right)^3}{27\cdot\left(\frac{2\sqrt{13}}{13}\right)^3-25\cdot\left(\frac{3\sqrt{13}}{13}\right)^3}\)
\(=-\frac{89}{459}\)
TH2 sin và cos cùng âm
\(\frac{sin^3a+3cos^3a}{27sin^3a-25cos^3a}\)
\(=\frac{\left(\frac{-2\sqrt{13}}{13}\right)^3+\left(\frac{-3\sqrt{13}}{13}\right)^3}{27\cdot\left(\frac{-2\sqrt{13}}{13}\right)^3-25\cdot\left(\frac{-3\sqrt{13}}{13}\right)^3}\)
\(=-\frac{89}{459}\)