K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2020

giúp mik vs

29 tháng 1 2019

bài này cũng khá khó gặm but đối với anh thì khác!

Vì bảng ô vuông có kích thước 5x5 nên có tất cả:5 hàng,5 cột,2 đường chéo nên có tất cả 12 tổng.

Do khi điền vào các ô là các số 0,1,-1 nên mỗi tổng(S) là một số nguyên thỏa mãn:\(-5\le S\le5\)

\(\Rightarrow\)có 11 giá trị trong khi đó có 12 tổng nên theo nguyên lý Đi-rích-lê(hay còn gọi là chuồng thỏ) thì tồn tại ít nhất 2 tổng có giá trị bằng nhau.

Bài toán được chứng minh_._

Vì bảng ô vuông có kích thước 5x5 nên có tất cả:5 hàng,5 cột,2 đường chéo nên có tất cả 12 tổng.

Do khi điền vào các ô là các số 0,1,-1 nên mỗi tổng(S) là một số nguyên thỏa mãn:−5≤S≤5

có 11 giá trị trong khi đó có 12 tổng nên theo nguyên lý Đi-rích-lê(hay còn gọi là chuồng thỏ) thì tồn tại ít nhất 2 tổng có giá trị bằng nhau.

(ĐPCM)

b)Vì bảng ô vuông có kích thước 5x5 nên có tất cả:5 hàng,5 cột,2 đường chéo nên có tất cả 12 tổng.

Do khi điền vào các ô là các số 0,1,-1 nên mỗi tổng(S) là một số nguyên thỏa mãn:−5≤S≤5

\(⇒\)có 11 giá trị trong khi đó có 12 tổng nên theo nguyên lý Đi-rích-lê(hay còn gọi là chuồng thỏ) thì tồn tại ít nhất 2 tổng có giá trị bằng nhau.

a)Nếu p chẵn => p=2 => p^2 + 2^p = 2^2 + 2^2 =8 (loại)

 Nếu p lẻ :

+) p\(⋮\)3 => p=3 => p^2 + 2^p =17 (thỏa)

+)p ko chia hết cho 3. Đặt p=3k\(\pm\)1

p^2=(3k\(\pm\)1)^2=9k^2 \(\pm\)6k+1=3(3k^2 \(\pm\)2k)+1 chia 3 dư 1

Còn: 2^p\(\equiv\)(-1)^p\(\equiv\)-1 (mod 3) do p lẻ

Do đó:p^2+2^p=1+(-1)=0 (mod 3)

Mà p^2 + 2^p >3 nên ko thể là số nguyên tố (loại)

Vậy p=3 thì 2^p + p^2 là snt

13 tháng 4 2017

Tích của mỗi hàng, mỗi cột,mỗi đường chéo là:

27.24.21 = 27+ 4+ 1 = 212

Từ đó ta điền được vào các ô trống còn lại như sau:

27 20 25
22 24 26
23 28 21