Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\dfrac{x^2}{2}+\dfrac{y^2}{2}+\dfrac{z^2}{2}+\dfrac{x^2+y^2+z^2}{xyz}\)
\(\Rightarrow P\ge\dfrac{x^2}{2}+\dfrac{y^2}{2}+\dfrac{z^2}{2}+\dfrac{xy+xz+yz}{xyz}\)
\(\Rightarrow P\ge\dfrac{x^2}{2}+\dfrac{1}{x}+\dfrac{y^2}{2}+\dfrac{1}{y}+\dfrac{z^2}{2}+\dfrac{1}{z}\)
\(\Rightarrow P\ge\left(\dfrac{x^2}{2}+\dfrac{1}{2x}+\dfrac{1}{2x}\right)+\left(\dfrac{y^2}{2}+\dfrac{1}{2y}+\dfrac{1}{2y}\right)+\left(\dfrac{z^2}{2}+\dfrac{1}{2z}+\dfrac{1}{2z}\right)\)
\(\Rightarrow P\ge3\sqrt[3]{\dfrac{x^2}{2}.\dfrac{1}{2x}.\dfrac{1}{2x}}+3\sqrt[3]{\dfrac{y^2}{2}.\dfrac{1}{2y}.\dfrac{1}{2y}}+3\sqrt[3]{\dfrac{z^2}{2}.\dfrac{1}{2z}.\dfrac{1}{2z}}=\dfrac{9}{2}\)
\(\Rightarrow P_{min}=\dfrac{9}{2}\) khi \(x=y=z=1\)
Áp dụng BĐT Cauchy cho cặp số dương \(\dfrac{1}{\left(z+x\right)};\dfrac{1}{\left(z+y\right)}\)
\(\dfrac{1}{\left(z+x\right)}+\dfrac{1}{\left(z+y\right)}\ge\dfrac{1}{2}.\dfrac{1}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\)
\(\Rightarrow\dfrac{xy}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\le\dfrac{2xy}{z+x}+\dfrac{2xy}{z+y}\left(1\right)\)
Tương tự ta được
\(\dfrac{zx}{\sqrt[]{\left(y+z\right)\left(y+x\right)}}\le\dfrac{2zx}{y+z}+\dfrac{2zx}{y+x}\left(2\right)\)
\(\dfrac{yz}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}\le\dfrac{2yz}{x+y}+\dfrac{2yz}{x+z}\left(3\right)\)
\(\left(1\right)+\left(2\right)+\left(3\right)\) ta được :
\(P=\dfrac{yz}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}+\dfrac{zx}{\sqrt[]{\left(y+z\right)\left(y+x\right)}}+\dfrac{xy}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\le\dfrac{2yz}{x+y}+\dfrac{2yz}{x+z}+\dfrac{2zx}{y+z}+\dfrac{2zx}{y+x}+\dfrac{2xy}{z+x}+\dfrac{2xy}{z+y}\)
\(\Rightarrow P\le2\left(x+y+z\right)=2.3=6\)
\(\Rightarrow GTLN\left(P\right)=6\left(tạix=y=z=1\right)\)
Đặt cái ban đầu là P
Ta có: \(xy+yz+zx=xyz\)
\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\)
Ta lại có:
\(\dfrac{xy}{z^3\left(1+x\right)\left(1+y\right)}+\dfrac{1+x}{64x}+\dfrac{1+y}{64y}\ge\dfrac{3}{16z}\)
\(\Leftrightarrow\dfrac{xy}{z^3\left(1+x\right)\left(1+y\right)}\ge\dfrac{3}{16z}-\dfrac{1}{32}-\dfrac{1}{64x}-\dfrac{1}{64y}\left(1\right)\)
Tương tự ta có:
\(\left\{{}\begin{matrix}\dfrac{yz}{x^3\left(1+y\right)\left(1+z\right)}\ge\dfrac{3}{16x}-\dfrac{1}{32}-\dfrac{1}{64y}-\dfrac{1}{64z}\left(2\right)\\\dfrac{zx}{y^3\left(1+z\right)\left(1+x\right)}\ge\dfrac{3}{16y}-\dfrac{1}{32}-\dfrac{1}{64z}-\dfrac{1}{64x}\left(3\right)\end{matrix}\right.\)
Từ (1), (2), (3) ta có:
\(P\ge\dfrac{3}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-\dfrac{1}{32}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-\dfrac{3}{32}\)
\(=\dfrac{3}{16}-\dfrac{1}{32}-\dfrac{3}{32}=\dfrac{1}{16}\)
Dấu = xảy ra khi \(x=y=z=3\)
Bài này cũng dễ mà:
Áp dụng BĐT Cô-si, ta có:
\(y+z+1\ge3\sqrt[3]{yz}\)
\(\Rightarrow\)\(\dfrac{y+z+1}{3}\ge\sqrt[3]{yz}\)
\(\Rightarrow\)\(\dfrac{x}{\sqrt[3]{yz}}\ge\dfrac{3x}{y+z+1}\)
\(\Rightarrow\)\(\sum\dfrac{x}{\sqrt[3]{yz}}\ge\sum\dfrac{3x}{y+z+1}\)
Mà \(\sum\dfrac{3x}{y+z+1}=\sum\dfrac{3x^2}{xy+xz+x}\)
Áp dụng BĐT Cauchy -Schwaz:
\(\sum\dfrac{3x^2}{xy+xz+x}\ge\dfrac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\)
Mà:
\(xy+yz+xz\le x^2+y^2+z^2\)(BĐT phụ)
\(\Rightarrow\)\(2\left(xy+yz+xz\right)\le2\left(x^2+y^2+z^2\right)=6\)
Áp dụng BĐT Bunhicopski:
\(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)=9\)
\(\Rightarrow x+y+z\le3\)
\(\Rightarrow2\left(xy+yz+xz\right)+x+y+z\le6+3=9\)
\(\Rightarrow\)\(\dfrac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\ge\dfrac{3\left(x+y+z\right)^2}{9}\ge\dfrac{\left(x+y+z\right)^2}{3}\ge xy+yz+xz\left(ĐPCM\right)\)
Dấu "=" xảy ra \(\Leftrightarrow\)x=y=z=1
Áp dụng BĐT cauchy:
\(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}\ge\dfrac{9}{xy+yz+zx}\)
\(M\ge\dfrac{1}{x^2+y^2+z^2}+\dfrac{9}{xy+yz+xz}=\dfrac{1}{x^2+y^2+z^2}+\dfrac{4}{2\left(xy+yz+xz\right)}+\dfrac{7}{xy+yz+zx}\)Áp dụng BĐT cauchy-schwarz:
\(\dfrac{1}{x^2+y^2+z^2}+\dfrac{4}{2\left(xy+yz+zx\right)}\ge\dfrac{\left(1+2\right)^2}{\left(x+y+z\right)^2}=9\)
và \(\dfrac{7}{xy+yz+xz}\ge\dfrac{7}{\dfrac{1}{3}\left(x+y+z\right)^2}=21\)
\(\Rightarrow M\ge9+21=30\)
dấu = xảy ra khi \(x=y=z=\dfrac{1}{3}\)
cô si cho đễ hiểu đi bn , cần gì phải cauchy s,. làm gì cho mệt
Lời giải:
Ta có: \(xy+yz+xz=3xyz\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)
Mà theo BĐT Cauchy-Schwarz: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}\)
Do đó: \(3\geq \frac{9}{x+y+z}\Rightarrow x+y+z\geq 3\)
-------
Ta có: \(\text{VT}=x-\frac{xz}{x^2+z}+y-\frac{xy}{y^2+x}+z-\frac{yz}{z^2+y}\)
\(=(x+y+z)-\left(\frac{xy}{y^2+x}+\frac{yz}{z^2+y}+\frac{xz}{x^2+z}\right)\)
\(\geq x+y+z-\frac{1}{2}\left(\frac{xy}{\sqrt{xy^2}}+\frac{yz}{\sqrt{z^2y}}+\frac{xz}{\sqrt{x^2z}}\right)\) (AM-GM)
\(=x+y+z-\frac{1}{2}(\sqrt{x}+\sqrt{y}+\sqrt{z})\)
Tiếp tục AM-GM: \(\sqrt{x}+\sqrt{y}+\sqrt{z}\leq \frac{x+1}{2}+\frac{y+1}{2}+\frac{z+1}{2}=\frac{x+y+z+3}{2}\)
Suy ra:
\(\text{VT}\geq x+y+z-\frac{1}{2}.\frac{x+y+z+3}{2}=\frac{3}{4}(x+y+z)-\frac{3}{4}\)
\(\geq \frac{9}{4}-\frac{3}{4}=\frac{3}{2}=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Ta có đpcm
Dấu bằng xảy ra khi $x=y=z=1$
Lời giải:
Từ \(x+y-z=-1\Rightarrow z-x-y=1\)
Ta có các biến đổi sau:
\(x+yz=x(z-x-y)+yz=x(z-x)+y(z-x)=(x+y)(z-x)\)
\(=(x+y)(y+1)\)
\(y+zx=y(z-x-y)+zx=y(z-y)+x(z-y)=(y+x)(z-y)\)
\(=(y+x)(x+1)\)
\(z+xy=z(z-x-y)+xy=(z-x)(z-y)=(x+1)(y+1)\)
Khi đó:\(P=\frac{x^3y^3}{(x+y)^2(x+1)^3(y+1)^3}(*)\)
Áp dụng BĐT Cauchy:
\((x+y)^2\geq 4xy\)
\(x+1=\frac{x}{2}+\frac{x}{2}+1\geq 3\sqrt[3]{\frac{x^2}{4}}\Rightarrow (x+1)^3\geq \frac{27x^2}{4}\)
\(y+1\geq 3\sqrt[3]{\frac{y^2}{4}}\Rightarrow (y+1)^3\geq \frac{27y^2}{4}\) (tương tự ở trên)
\(\Rightarrow (x+y)^2(x+1)^3(y+1)^3\geq \frac{729}{4}x^3y^3(**)\)
Từ \((*); (**)\Rightarrow P\leq \frac{x^3y^3}{\frac{729}{4}x^3y^3}=\frac{4}{279}\Rightarrow P_{\max}=\frac{4}{729}\)
Đẳng thức xảy ra khi \(x=y=2; z=5\)
Ta có:
\(\dfrac{x}{yz}+\dfrac{y}{zx}+\dfrac{z}{xy}=\dfrac{1}{2}\left(\dfrac{x}{yz}+\dfrac{y}{zx}+\dfrac{x}{yz}+\dfrac{z}{xy}+\dfrac{y}{zx}+\dfrac{z}{xy}\right)\ge\dfrac{1}{2}\left(\dfrac{2}{z}+\dfrac{2}{y}+\dfrac{2}{x}\right)\)
\(\Rightarrow P\ge\dfrac{1}{2}\left(x^2+y^2+z^2\right)+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)
\(\Rightarrow P\ge\dfrac{1}{2}\left(x^2+\dfrac{1}{x}+\dfrac{1}{x}\right)+\dfrac{1}{2}\left(y^2+\dfrac{1}{y}+\dfrac{1}{y}\right)+\dfrac{1}{2}\left(z^2+\dfrac{1}{z}+\dfrac{1}{z}\right)\)
\(\Rightarrow P\ge\dfrac{3}{2}\sqrt[3]{\dfrac{x^2}{x^2}}+\dfrac{3}{2}\sqrt[3]{\dfrac{y^2}{y^2}}+\dfrac{3}{2}\sqrt[3]{\dfrac{z^2}{z^2}}=\dfrac{9}{2}\)
Dấu "=" xảy ra khi \(x=y=z=1\)