Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(a\le b+1\le c+2\)
\(\Rightarrow a+b+1+c+2\le3.\left(c+2\right)\)
\(\Rightarrow a+b+c+3\le3c+6.\)
Mà \(a+b+c=1\)
\(\Rightarrow1+3\le3c+6\)
\(\Rightarrow4\le3c+6\)
\(\Rightarrow-2\le3c\)
\(\Rightarrow-\frac{2}{3}\le c.\)
Hay \(c\ge-\frac{2}{3}\)
Dấu " = " xảy ra khi:
\(c=-\frac{2}{3}.\)
Vậy \(MIN_c=-\frac{2}{3}.\)
Chúc bạn học tốt!
Vì:0≤a≤b+1≤c+2 nên 0≤a+b+1+c+2≤c+2+c+2+c+2
=>0≤4≤3c+6(vì a+b+c=1)
Hay 3c≥-2=>c≥-2/3.
Vậy GTNN của c là:-2/3 khi đó a+b=5/3.
Từ \(a\le b+1\le c+2\Rightarrow a+b+1+c+2\le3\left(c+2\right)\)\(\Rightarrow a+b+c+3\le3c+6\)
Mà a+b+c=1
\(\Rightarrow4\le3c+6\)
\(\Rightarrow-2\le3c\)
\(\Rightarrow c\ge-\frac{2}{3}\)
Dấu ''='' xảy ra khi \(c=\frac{-2}{3}\)
Vậy c nhỏ nhất khi \(c=\frac{-2}{3}\)
Giải:
Đặt \(c_1=a_1-b_1;c_2=a_2-b_2;...;c_{2015}=a_{2015}-b_{2015}\)
Xét tổng \(c_1+c_2+c_3+...+c_{2015}\) ta có:
\(c_1+c_2+c_3+...+c_{2015}\)
\(=\left(a_1-b_1\right)+\left(a_2-b_2\right)+...+\left(a_{2015}-b_{2015}\right)\)
\(=0\)
\(\Rightarrow c_1;c_2;c_3;...;c_{2015}\) phải có một số chẵn
\(\Rightarrow c_1.c_2.c_3...c_{2015}⋮2\)
Vậy \(\left(a_1-b_1\right)\left(a_2-b_2\right)...\left(a_{2015}-b_{2015}\right)⋮2\) (Đpcm)
Ta có :
a^xyz=(a^x)^yz=(bc)^yz
=b^yz.c^yz
=(b^y)^z.(c^z)^y
=(ca)^z.(ab)^y
=c^z.a^z.a^y.b^y
=(bc).a^z.a^y.(ca)
=a^2.a^y.a^z.(bc)
=a^2.a^y.a^z.a^x
=a^(x+y+z+2)
=>xyz=x+y+z+2
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{b+c}=\frac{1}{2}\\\frac{b}{a+c}=\frac{1}{2}\\\frac{c}{a+b}=\frac{1}{2}\end{cases}\Rightarrow\hept{\begin{cases}b+c=2a\\a+c=2b\\a+b=2c\end{cases}}}\)
Thay vào biểu thức A ta có :
\(A=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=2+2+2=6\)
Vậy..........