K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2018

Đặt \(\frac{a}{2014}=\frac{b}{2015}=\frac{c}{2016}=k\)

\(\Rightarrow a=2014k;b=2015k;c=2016k\)

\(\Rightarrow4(a-b)(b-c)=4(2014k-2015k)(2015k-2016k)\)

\(\Rightarrow4\cdot k(2014-2015)\cdot k(2015-2016)=4\cdot k\cdot(-1)\cdot k\cdot(-1)=4\cdot k^2\)

\(\Rightarrow(c-a)(c-a)=(c-a)^2=(2016k-2014k)=[k(2016-2014)]^2=(k\cdot2)^2=k^{2\cdot4}\)

Rồi tự suy ra đấy

Bạn Namikaze Minato làm đúng rồi đấy

17 tháng 5 2018

\(\frac{a}{2014}=\frac{b}{2015}=\frac{c}{2016}=\frac{a-b}{2014-2015}\)

\(=\frac{b-c}{2015-2016}=\frac{c-a}{2016-2014}\)

\(=\frac{a-b}{-1}=\frac{b-c}{-1}=\frac{c-a}{2}\)

\(\Rightarrow a-b=-\frac{c-a}{2};b-c=-\frac{c-a}{2}\)

do đó: \(\left(a-b\right)\left(b-c\right)=\frac{\left(c-a\right)^2}{4}\)

\(\Rightarrow M=4\left(a-b\right)\left(b-c\right)-\left(c-a\right)^2=0\)

23 tháng 12 2016

Áp dụng BĐT AM-GM ta có:

\(6=2\left(\frac{a}{b}+\frac{b}{a}\right)+c\left(\frac{a}{b^2}+\frac{b}{a^2}\right)\)

\(\ge4+\frac{c\left(a^3+b^3\right)}{a^2b^2}\ge4+\frac{c\left(a+b\right)}{ab}\)\(\Rightarrow\frac{c\left(a+b\right)}{ab}\in\text{(}0;2\text{]}\)

Áp dụng BĐT Cauchy-Schwarz lại có:

\(P\ge\frac{\left(bc+ca\right)^2}{2abc\left(a+b+c\right)}+\frac{4}{\frac{c\left(a+b\right)}{ab}}\)\(\ge\frac{3c^2\left(a+b\right)^2}{2\left(ab+bc+ca\right)}+\frac{4}{\frac{c\left(a+b\right)}{ab}}\)

\(=\frac{\frac{3c^2\left(a+b\right)^2}{a^2b^2}}{2\left(1+\frac{ca}{ab}+\frac{bc}{ab}\right)^2}+\frac{4}{\frac{c\left(a+b\right)}{ab}}\)

\(=\frac{\frac{3c^2\left(a+b\right)^2}{a^2b^2}}{2\left[1+\frac{c\left(a+b\right)}{ab}\right]^2}+\frac{4}{\frac{c\left(a+b\right)}{ab}}\)

Đặt \(x=\frac{c\left(a+b\right)}{ab}\left(x\in\text{(}0;2\text{]}\right)\) khi đó ta có:

\(P\ge\frac{3x^2}{2\left(1+x\right)^2}+\frac{4}{x}\) cần chứng minh \(P\ge\frac{8}{3}\Leftrightarrow\left(x-2\right)\left(7x^2+22x+12\right)\le0\forall x\in\text{(0;2]}\)

Vậy \(Min_P=\frac{8}{3}\) khi a=b=c=2

23 tháng 12 2016

Chỗ dùng cauchy- schwarz mình không hiểu lắm

25 tháng 3 2018

thi hsg co cao khong

25 tháng 3 2018

dang no giong bai bdt vap LHP chuyen nam 2017-2018

2 tháng 11 2017

a,a=b+1

suy ra a-b=1 suy ra(\(\sqrt{a}+\sqrt{b}\))(\(\sqrt{a}-\sqrt{b}\))=1

suy ra \(\sqrt{a}-\sqrt{b}\)=\(\frac{1}{\sqrt{a}+\sqrt{b}}\)(1)

vì a=b+1 suy ra a>b suy ra \(\sqrt{a}>\sqrt{b}\)suy ra \(\sqrt{a}+\sqrt{b}>2\sqrt{b}\)

suy ra \(\frac{1}{\sqrt{a}+\sqrt{b}}< \frac{1}{2\sqrt{b}}\)(2)

từ (1) ,(2) suy ra\(\sqrt{a}-\sqrt{b}< \frac{1}{2\sqrt{b}}\)suy ra \(2\left(\sqrt{a}-\sqrt{b}\right)< \frac{1}{\sqrt{b}}\)(*)

ta lại có b+1=c+2 suy ra b-c =1 suy ra\(\left(\sqrt{b}-\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)=1\)

suy ra \(\sqrt{b}-\sqrt{c}=\frac{1}{\sqrt{b}+\sqrt{c}}\)(3)

vì b>c suy ra \(\sqrt{b}>\sqrt{c}\) suy ra \(\sqrt{b}+\sqrt{c}>2\sqrt{c}\)

suy ra \(\frac{1}{\sqrt{b}+\sqrt{c}}< \frac{1}{2\sqrt{c}}\)(4)

Từ (3),(4) suy ra \(\sqrt{b}-\sqrt{c}< \frac{1}{2\sqrt{c}}\) suy ra\(2\left(\sqrt{b}+\sqrt{c}\right)< \frac{1}{\sqrt{c}}\)(**)

từ (*),(**) suy ra đccm

31 tháng 5 2016

Đặt  \(x=\frac{2}{a};\) \(y=\frac{4}{b};\)  \(z=\frac{1}{c}\)  

(Vì  \(a,b,c\in R^+\) nên suy ra  \(x,y,z>0\) )

Khi đó, điều kiện (giả thiết) đã cho trở thành  \(\frac{x^3+y^3}{xyz}+2\left(\frac{x}{y}+\frac{y}{x}\right)=6\)   \(\left(\text{*}\right)\)

Với điều kiện mà  \(x,y,z\)  nhận được trên thì ta dễ dàng chứng minh được:  

\(x^3+y^3\ge xy\left(x+y\right)\)  

Do đó,   \(\frac{x^3+y^3}{xyz}\ge\frac{xy\left(x+y\right)}{xyz}=\frac{x+y}{z}\)

Mặt khác, nhờ vào bđt Cauchy và yếu tố chủ chốt là  \(x,y>0\), ta có đánh giá sau:  \(\frac{x}{y}+\frac{y}{x}\ge2\) 

nên  \(6=\frac{x^3+y^3}{xyz}+2\left(\frac{x}{y}+\frac{y}{x}\right)\ge\frac{x+y}{z}+4\)

\(\Rightarrow\)  \(0< \frac{x+y}{z}\le2\)

\(--------------\)

Ta có:

\(P=\frac{x}{y+2z}+\frac{y}{2z+x}+\frac{4z}{x+y}\ge\frac{x^2}{xy+2xz}+\frac{y^2}{2yz+xy}+\frac{4z}{x+y}\)

\(\ge\frac{\left(x+y\right)^2}{2xy+2z\left(x+y\right)}+\frac{4z}{x+y}\ge\frac{\left(x+y\right)^2}{\frac{\left(x+y\right)^2}{2}+2z\left(x+y\right)}+\frac{4z}{x+y}=\frac{2\left(x+y\right)}{x+y+4z}+\frac{4z}{x+y}\)

Tóm lại:  \(P\ge\frac{\frac{2\left(x+y\right)}{z}}{\frac{x+y}{z}+4}+\frac{4}{\frac{x+y}{z}}\)

\(--------------\)

Đặt  \(t=\frac{x+y}{z}\)  \(\left(0< t\le2\right)\). Ta biểu diễn bất đẳng thức trên dưới dạng biến  \(t\)  như sau:

\(P\ge\frac{2t}{t+4}+\frac{4}{t}=\frac{2t}{t+4}+\frac{4}{t+4}+\frac{8}{t\left(t+4\right)}+\frac{8}{t\left(t+4\right)}\ge3\sqrt[3]{\frac{64t}{t\left(t+4\right)^3}}+\frac{8}{t\left(t+4\right)}\)

\(\ge\frac{12}{t+4}+\frac{8}{t\left(t+4\right)}\ge\frac{12}{2+4}+\frac{8}{2.6}=\frac{8}{3}\)

Dấu  \("="\) xảy ra   \(\Leftrightarrow\)   \(\hept{\begin{cases}x=y\\\frac{x+y}{z}=2\end{cases}}\)  \(\Leftrightarrow\)  \(x=y=z\)  \(\Leftrightarrow\)  \(2a=b=4c\)

Vậy,  \(P\) đạt giá trị nhỏ nhất là  \(\frac{8}{3}\) khi  \(2a=b=4c\)

9 tháng 8 2017

\(\sqrt{a}+\sqrt{b}+\sqrt{c}=3< =>\left(a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}\right)=9< =>\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=2\\ \\ \)
Ở đâu có 2 thì thay vào @@
 

10 tháng 8 2017

Ta có:

\(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=\left(a+b+c\right)+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)

\(\Rightarrow\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2-\left(a+b+c\right)}{2}=\frac{3^2-5}{2}=2\)

Ở đâu có 2 thay bằng \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)  là được

20 tháng 5 2020

Dat \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x,y,z\right)\)

thi \(P= \Sigma \frac{z^2}{x+y} \geq \frac{x+y+z}{2} \) (1)

Mat khac co \(x+y+z=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=3\) (2)

Tu (1) va (2) suy ra \(P\ge\frac{3}{2}\).Dau = xay ra khi \(a=b=c=1\)