Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
PT hoành độ giao điểm của $(d_1)$ và $(d_2)$:
$2x+1=3\Rightarrow x=1$
Vậy tọa độ giao điểm là $(1,3)$
b)
Để 3 đường thẳng đã cho đồng quy thì $(d_3)$ đi qua giao điểm của $(d_1)$ và $(d_2)$, tức là $(d_3)$ đi qua điểm $(1,3)$
$\Rightarrow 3=k.1+5\Rightarrow k=-2$
Hoành độ giao điểm của \(d',d"\) là nghiệm của pt
\(2x+4=-3x-1\\ \Rightarrow5x=-5\\ \Rightarrow x=-1\\ \Rightarrow y=-3.\left(-1\right)-1=2\)
Ta được điểm \(\left(-1;2\right)\)
Thay \(x=-1;y=2\) vào \(d\)
\(\Rightarrow2=\left(m+2\right).\left(-1\right)-3m\\ \Rightarrow-m-2-3m=2\\ \Rightarrow-4m=4\\ \Rightarrow m=-1\)
\(\Rightarrow D\)
a) x =-2 d' => y =2(-2) -1 =-5 => M(-2;-5)
d cắt d' tại M =>k khác 2 và M thuộc (d) => k.(-2) -4 =-5 => -2k = -1 => k =1/2 (TM)
b) + Phương trình hoành độ giao điểm của d1 và d2 là:
3x =x+2 => x =1
với x =1 (d1) => y =3 => d1 cắt d2 tại N(1;3)
Để 3 đường thẳng đồng quy thì d3 qua N => (m-3).1 +2m +1 =3 => m -3 +2m +1 =3 => 3m =5 => m =5/3
Hoành độ giao điểm tm pt
2x + 4 = -3x - 1 <=> 5x = -5 <=> x = -1
=> y = -2 + 4 = 2
Vậy (d') cắt (d'') tại A(-1;2)
Để 3 điểm đồng quy khi (d) đi qua A(-1;2)
<=> -(m+2) - 3m = 2
<=> -4m = 4 <=> m = -1
chọn D
Tọa độ giao điểm của hai đường thẳng (d1) : -y=-3 và (d2) : -2x-2y=-2 là nghiệm của hệ phương trình :
\(\hept{\begin{cases}-y=-3\\-2x-2y=-2\end{cases}}\)
Giải hệ phương trình ta được
\(\hept{\begin{cases}x=-2\\y=3\end{cases}}
\)
Vậy A = ( -2 , 3)
Thay A=(-2, 3) vào (d_3) ta có :
3m.(-2) + (2m-5).3 =4m+1
, <=> -6m + ( 6m -15 ) = 4m+1
<=> -6m + 6m -15 = 4m+1
<=> -6m + 6m -4m = 15 +1
<=> -4m =16
<=> m= -4
Vậy m = -4 thì 3 đường thẳng (d_1 ) , (d_2) , (d_3 ) đồng qui
2: Tọa độ giao điểm của (d1) và (d2) là:
\(\left\{{}\begin{matrix}x+2=4-3x\\y=x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{5}{2}\end{matrix}\right.\)
Thay x=1/2 và y=5/2 vào (d), ta được:
\(\dfrac{1}{2}m-1+2-m=\dfrac{5}{2}\)
=>-1/2m=3/2
hay m=-3
+) Thay tọa độ điểm M (0; 5) vào phương trình đường thẳng d2 ta được 5 = 5 . 0 – 1 ⇔ 5 = − 1 (vô lý)
+) Xét tính đồng quy của ba đường thẳng
* Phương trình hoành độ giao điểm của d 1 v à d 2 :
− x + 5 = 5 x – 1 ⇔ 6 x = 6 ⇔ x = 1 ⇒ y = − 1 + 5 ⇒ y = 4
Suy ra tọa độ giao điểm của d 1 v à d 2 là (1; 4)
* Thay x = 1 ; y = 4 vào phương trình đường thẳng d3 ta được 4 = − 2 . 1 + 6 4 = 4 (luôn đúng)
Vậy ba đường thẳng trên đồng quy tại điểm N (1; 4)
Đáp án cần chọn là: B