Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác BHCK có
BH//CK
BK//CH
=>BHCK là hình bình hành
=>H,M,K thẳng hàng
b: BHCK là hình thoi khi BH=HC
=>AB=AC
a: Ta có: H và D đối xứng với nhau qua AB
nên AH=AD; BH=BD
=>ΔHAD cân tại A
=>AB là phân giác của góc HAD(1)
Ta có H và E đối xứngvới nhau qua AC
nên AH=AE; CH=CE
=>ΔAHE cân tại A
=>AC là phân giác của góc HAE(2)
Từ (1) và (2) suy ra góc DAE=2xgóc BAC=180 độ
=>D,A,E thẳng hàng
b: Xét ΔAHB và ΔADB có
AH=AD
BH=BD
AB chung
Do đó: ΔAHB=ΔADB
Suy ra: góc ADB=90 độ
=>BD vuông góc với DE(3)
Xét ΔAHC và ΔAEC có
AH=AE
HC=EC
AC chung
Do đó: ΔAHC=ΔAEC
Suy ra: góc AEC=90 độ
=>CE vuông góc với ED(4)
Từ (3) và (4) suy ra BDEC là hình thang vuông
c: ED=AE+AD
=AH+AH=2AH
d: Xét ΔDHE có
HA là đường trung tuyến
HA=DE/2
Do đó: ΔDHE vuông tại H
a: BH vuông góc CA
CD vuông góc CA
=>BH//CD
b: CH vuông góc AB
AB vuông góc BD
=>BD//Ch
Xét tứ giác BHCD có
BH//CD
BD//CH
=>BHCD là hbh
a: Ta có: DB\(\perp\)AB
AC\(\perp\)AB
Do đó: DB//AC
Xét ΔECA có DB//AC
nên \(\dfrac{BE}{BA}=\dfrac{DE}{DC}\)
b: Xét ΔCEK có DB//EK
nên \(\dfrac{DB}{EK}=\dfrac{CD}{CE}\)(1)
Xét ΔAEI có DB//EI
nên \(\dfrac{DB}{EI}=\dfrac{AB}{AE}\left(2\right)\)
Ta có: \(\dfrac{BE}{BA}=\dfrac{DE}{DC}\)
=>\(\dfrac{BE+BA}{BA}=\dfrac{DE+DC}{DC}\)
=>\(\dfrac{AE}{BA}=\dfrac{CE}{DC}\)
=>\(\dfrac{CD}{CE}=\dfrac{AB}{AE}\left(3\right)\)
Từ (1),(2),(3) suy ra EI=EK
tick đi tui làm cho. sai cho olm khóa nick của tui
ai giup vs
Cho x,y là hai số thoả mãn 2(x2+y2)=(x-y)2 Khi đó ta có hệ thức biểu diễn mối quan hệ giữa x,y là x=....y
giải chi tiết nha