K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2018

Giải bài 41 trang 129 SGK Toán 9 Tập 2 | Giải toán lớp 9 

Giải bài 41 trang 129 SGK Toán 9 Tập 2 | Giải toán lớp 9

c) Khi quay hình vẽ xung quanh cạnh AB: ΔAOC tạo nên hình nón, bán kính đáy là AC, chiều cao AO; ΔBOD tạo nên hình nón, bán kính đáy BD, chiều cao OB.

Giải bài 41 trang 129 SGK Toán 9 Tập 2 | Giải toán lớp 9

26 tháng 3 2019

a,  A O C ^ = O D B ^  (cùng phụ  B O D ^ )

=> DAOC ~ DBDO (g.g)

=>  A C B O = A O B D

=> AC.BD = a.b (không đổi)

b,  Ta có  C O A ^ = O D B ^ = 60 0 , A C O ^ = D O B ^ = 30 0 , AC = a 3 , BD =  b 3 3

i,  S A B C D = 3 a + b 3 a + b 6

ii, 9

9 tháng 4 2019

Khi quay hình vẽ xung quanh cạnh AB: ΔAOC tạo nên hình nón, bán kính đáy là AC, chiều cao AO; ΔBOD tạo nên hình nón, bán kính đáy BD, chiều cao OB.

Giải bài 41 trang 129 SGK Toán 9 Tập 2 | Giải toán lớp 9

17 tháng 4 2017

Hướng dẫn trả lời:

a) Xét hai tam giác vuông AOC và BDO ta có: ˆA=ˆB=900A^=B^=900

ˆAOC=ˆBDOAOC^=BDO^ (hai góc có cạnh tương ứng vuông góc).

Vậy ∆AOC ~ ∆BDO

⇒ACAO=BOBDhayACa=bBD⇒ACAO=BOBDhayACa=bBD (1)

Vậy AC . BD = a . b = không đổi.

b) Khi thì tam giác AOC trở thành nửa tam giác đều cạnh là OC, chiều cao AC.

⇒OC=2AO=2a⇔AC=OC√32=a√3⇒OC=2AO=2a⇔AC=OC32=a3

Thay AC = a√3 vào (1), ta có:

ACa=bBD=a√3.BD=a.b⇒BD=aba√3=b√33ACa=bBD=a3.BD=a.b⇒BD=aba3=b33

Ta có công thức tính diện tích hình thang ABCD là:

S=AC+BD2.AB=a√3+b√332.(a+b)=√36(3a2+4ab+b2)(cm2)S=AC+BD2.AB=a3+b332.(a+b)=36(3a2+4ab+b2)(cm2)

c) Theo đề bài ta có:

∆AOC tạo nên hình nón có bán kính đáy là AC = a√3 và chiều cao là AO = a.

∆BOD tạo nên hình nón có bán kính đáy là BD=b√33BD=b33 và chiều cao OB = b

Ta có: V1V2=13π.AC2.AO13π.BD2.OB=AC2.AOBD2.OB=(a√3)2.a(b√33)2.b=3a3b33=9a3b3V1V2=13π.AC2.AO13π.BD2.OB=AC2.AOBD2.OB=(a3)2.a(b33)2.b=3a3b33=9a3b3

Vậy V1V2=9a3b3

28 tháng 2 2017

Giải bài 41 trang 129 SGK Toán 9 Tập 2 | Giải toán lớp 9

6 tháng 5 2017

3 tháng 7 2019

a), b) HS tự chứng minh

c, AM =  R 2 =>  S M O N S A P B = 25 16

d, V =  4 3 πR 3

27 tháng 1 2019

a, Sử dụng các tứ giác nội tiếp chứng minh được  P M O ^ = P A O ^  và  P N O ^ = P B O ^ => ∆MON và ∆APB đồng dạng (g.g)

b, Theo tính chất hai tiếp tuyến cắt nhau ta có: MP = MA và NP = NB

Mặt khác MP.NP = P O 2  và PO = R Þ AM.BN = R 2  (ĐPCM)

c, Ta có  A M = R 2 => M P = R 2

Mặt khác  A M = R 2 => BN = 2R => PN = 2R

Từ đó tìm được MN =  5 R 2

DMON và DAPB đồng dạng nên  S M O N S A P B = M N A B 2 = 25 16

d, Khi quay nửa đường tròn đường kính AB xung quanh AB ta được hình cầu với tâm O và bán kính R' = OA = R

Thể tích hình cầu đó là V =  4 3 πR 3 (đvdt)

1 tháng 3 2018

 Đặt AC = x; BD = y (x, y > 0)

Ta có \(\Delta ACM\sim\Delta BMD\left(g-g\right)\Rightarrow\frac{AC}{MB}=\frac{AM}{BD}\)

\(\Rightarrow AC.BD=AM.MB=const\Rightarrow xy=c=const\)

\(S_{MCD}=S_{ACDB}-S_{ACM}-S_{MBD}=\frac{\left(x+y\right)\left(AM+MB\right)}{2}-\frac{x.AM}{2}-\frac{y.MB}{2}\)

\(=\frac{x.MB+y.AM}{2}\ge\sqrt{xy.MB.AM}=\sqrt{c^2}=c\)

Dấu bằng xảy ra khi x.MB = y.AM, lại có \(xy=MB.AM\Rightarrow\hept{\begin{cases}x=AM\\y=MB\end{cases}}\)

Vậy giá trị nhỏ nhất của \(S_{CMD}=c\left(đvdt\right)\) xảy ra khi AC = AM; BD = BM.

1 tháng 3 2018

Em tham khảo tại link dưới đây nhé.

Câu hỏi của Linhllinh - Toán lớp 9 - Học toán với OnlineMath