K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
2. Các số đó là 153, 351, 450, 657, 756, 297, 459.
Còn lại mik ko biết thông cảm nha
k với
5 tháng 6 2019
câu 1 đáp án là 1998 ta lấy 333,666,999 cộng lại sẽ ra
6 tháng 4 2017
ko tính đề nha
\(=\frac{x+y+z}{2x+y+z}\)
\(=\frac{1}{2}\)
6 tháng 4 2017
Lẽ ra đề phải là chứng minh \(\frac{x}{2x+y+z}+\frac{y}{2y+x+z}+\frac{z}{2z+y+x}\le\frac{3}{4}\), nên ta có \(:\)
\(\frac{x}{2x+y+z}+\frac{y}{2y+x+z}+\frac{z}{2z+x+y}=\frac{1}{2}\cdot\frac{x}{x+y+z}+\frac{1}{2}\cdot\frac{y}{x+y+z}+\frac{1}{2}\cdot\frac{z}{x+y+z}\)
\(=\frac{1}{2}\cdot\frac{x+y+z}{x+y+z}=\frac{1}{2}\)
\(\Rightarrow\frac{1}{2}< \frac{3}{4}\left(đpcm\right)\)