K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2018

a) Ta có: \(A=3+3^3+3^5+...+3^{1991}\)

\(=\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+...+\left(3^{1987}+3^{1989}+3^{1991}\right)\)

\(=3\times\left(1+3^2+3^4\right)+3^7\times\left(1+3^2+3^4\right)+...+3^{1987}\times\left(1+3^2+3^4\right)\)

\(=3\times91+3^7\times91+...+3^{1987}\times91\)

\(=3\times7\times13+3^7\times7\times13+...+3^{1987}\times7\times13\)

\(=13\times\left(3\times7+3^7\times7+...+3^{1987}\times7\right)\)

Vì \(A=13\times\left(3\times7+3^7\times7+...+3^{1987}\times7\right)\)nên A chia hết cho 13.

b) Ta có: \(A=3+3^3+3^5+...+3^{1991}\)

\(=\left(3+3^3+3^5+3^7\right)+...+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)\)

\(=3\times\left(1+3^2+3^4+3^6\right)+...+3^{1985}\times\left(1+3^2+3^4+3^6\right)\)

\(=3\times820+...+3^{1985}\times820\)

\(=3\times20\times41+...+3^{1985}\times20\times41\)

\(=41\times\left(3\times20+...+3^{1985}\times20\right)\)

Vì \(A=41\times\left(3\times20+...+3^{1985}\times20\right)\)nên A chia hết cho 41.

28 tháng 7 2015

 B= 3+3^3+3^5+...+3^1991

a)Các số hạng của B là: (1991-1):2+1=996(số hạng)

b)

B=3+3^3+3^5+...+3^1991

B=(3+3^3+3^5)+(3^6+3^7+3^8)+...+(3^1989+3^1990+3^1991)

  = 3(3^2+3^4+1)+3^6(3+3^2+1)+...+3^1989(3+3^2+1)

  =3.91+3^6.13+...+3^1989.13

Ta thấy : 3.91 chia hết cho 91 => chia hết cho 13

3^6.13 chia hết cho 13.

....

3^1989.13 chia hết cho 13. 

=>   =3.91+3^6.13+...+3^1989.13 chia hết cho 13. 

=> ĐPCM

9 tháng 7 2019

\(A=2+2^2+......+2^{59}+2^{60}\)

\(A=2\left(1+2\right)+....+2^{59}\left(1+2\right)\)

\(A=2\cdot3+...+2^{59}\cdot3⋮3\)

9 tháng 7 2019

\(2+2^2+2^3+....+2^{58}+2^{59}+2^{60}\)

\(=2\left(1+2+4\right)+....+2^{58}\left(1+2+4\right)\)

\(=2\cdot7+.....+2^{58}\cdot7⋮7\)

23 tháng 8 2015

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6

18 tháng 11 2017

a) \(2010^{100}+2010^{99}\)

\(=2010^{99}\left(2010+1\right)\)

\(=2010^{99}.2011⋮2011\left(dpcm\right)\)

b) \(3^{1994}+3^{1993}-3^{1992}\)

\(=3^{1992}\left(3^2+3-1\right)\)

\(=3^{1992}.11⋮11\left(dpcm\right)\)

c) \(4^{13}+32^5-8^8\)

\(=\left(2^2\right)^{13}+\left(2^5\right)^5-\left(2^3\right)^8\)

\(=2^{26}+2^{25}-2^{24}\)

\(=2^{24}\left(2^2+2-1\right)\)

\(=2^{24}.5⋮5\left(dpcm\right)\)

3 tháng 7 2016

a.

\(\left(0,25\right)^3\times32\)

\(=\left(0,25\right)^3\times2^5\)

\(=\left(0,25\right)^3\times2^3\times2^2\) 

\(=\left(0,25\times2\right)^3\times4\)

\(=\left(0,5\right)^3\times4\)

\(=0,125\times4\)

\(=0,5\)

b.

\(\left(-0,125\right)^3\times80^4\)

\(=\left(-0,125\right)^3\times80^3\times80\)

\(=\left(-0,125\times80\right)^3\times80\)

\(=\left(-10\right)^3\times80\)

\(=-1000\times80\)

\(=-80000\)

c.

\(3^{1994}+3^{1993}-3^{1992}\)

\(=3^{1992}\times\left(3^2+3-1\right)\)

\(=3^{1992}\times\left(9+3-1\right)\)

\(=3^{1992}\times11\)

\(\Rightarrow3^{1994}+3^{1993}-3^{1992}⋮11\)

d.

\(4^{13}+32^5-8^8\)

\(=\left(2^2\right)^{13}+\left(2^5\right)^5-\left(2^3\right)^8\)

\(=2^{26}+2^{25}-2^{24}\)

\(=2^{24}\times\left(2^2+2-1\right)\)

\(=2^{24}\times\left(4+2-1\right)\)

\(=2^{24}\times5\)

\(\Rightarrow4^{13}+32^5-8^8⋮5\)

Chúc bạn học tốtok

4 tháng 7 2016

thanhks bạn nhiều