Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này dài lắm
\(A=\frac{\frac{1}{1.101}+\frac{1}{2.102}+\frac{1}{3.103}+...+\frac{1}{25.125}}{\frac{1}{1.26}+\frac{1}{2.27}+\frac{1}{3.28}+...+\frac{1}{100.125}}\)
\(A=\frac{\frac{1}{100}.\left(1-\frac{1}{101}+\frac{1}{2}-\frac{1}{102}+\frac{1}{3}-\frac{1}{103}+...+\frac{1}{25}-\frac{1}{125}\right)}{\frac{1}{25}.\left(1-\frac{1}{26}+\frac{1}{2}-\frac{1}{27}+\frac{1}{3}-\frac{1}{28}+...+\frac{1}{100}-\frac{1}{125}\right)}\)
\(A=\frac{\frac{1}{100}.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}-\frac{1}{101}-\frac{1}{102}-\frac{1}{103}-...-\frac{1}{125}\right)}{\frac{1}{25}.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-\frac{1}{26}-\frac{1}{27}-\frac{1}{28}-...-\frac{1}{125}\right)}\)
\(A=\frac{\frac{1}{100}.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}-\frac{1}{101}-\frac{1}{102}-\frac{1}{103}-...-\frac{1}{125}\right)}{\frac{1}{25}.\left(1+\frac{1}{2}+...+\frac{1}{25}+\frac{1}{26}+\frac{1}{27}+...+\frac{1}{100}-\frac{1}{26}-\frac{1}{27}-...-\frac{1}{100}-\frac{1}{101}-...-\frac{1}{125}\right)}\)
\(A=\frac{\frac{1}{100}.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}-\frac{1}{101}-\frac{1}{102}-\frac{1}{103}-...-\frac{1}{125}\right)}{\frac{1}{25}.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}-\frac{1}{101}-\frac{1}{102}-\frac{1}{103}-...-\frac{1}{125}\right)}\)
\(A=\frac{\left(\frac{1}{100}\right)}{\left(\frac{1}{25}\right)}=\frac{1}{4}\)
\(B=\frac{\frac{16}{9}-\frac{16}{127}+\frac{16}{2017}}{\frac{5}{2017}+\frac{5}{9}-\frac{5}{127}}-\frac{\frac{6000}{43}-\frac{6000}{257}-\frac{125}{42}}{\frac{2000}{43}-\frac{250}{252}-\frac{2000}{257}}\)
\(B=\frac{\frac{16}{9}-\frac{16}{127}+\frac{16}{2017}}{\frac{5}{2017}+\frac{5}{9}-\frac{5}{127}}-\frac{\frac{6000}{43}-\frac{6000}{257}-\frac{6000}{2016}}{\frac{2000}{43}-\frac{2000}{2016}-\frac{2000}{257}}\)
\(B=\frac{16.\left(\frac{1}{9}-\frac{1}{127}+\frac{1}{2017}\right)}{5.\left(\frac{1}{2017}+\frac{1}{9}-\frac{1}{127}\right)}-\frac{6000.\left(\frac{1}{43}-\frac{1}{257}-\frac{1}{2016}\right)}{2000.\left(\frac{1}{43}-\frac{1}{2016}-\frac{1}{257}\right)}\)
\(B=\frac{16}{5}-3=\frac{1}{5}\)
Đặt \(C=\frac{1}{2007^2}+\frac{1}{2006^2}+\frac{1}{2005^2}+...+\frac{1}{7^2}+\frac{1}{6^2}+\frac{1}{5^2}\)
\(C=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2005^2}+\frac{1}{2006^2}+\frac{1}{2007^2}\)
\(C< \frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{2004.2005}+\frac{1}{2005.2006}+\frac{1}{2006.2007}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{2005}-\frac{1}{2006}+\frac{1}{2006}-\frac{1}{2007}\)
\(=\frac{1}{4}-\frac{1}{2017}\left(đpcm\right)\)
\(C>\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{2005.2006}+\frac{1}{2006.2007}+\frac{1}{2007.2008}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{2006}-\frac{1}{2007}+\frac{1}{2007}-\frac{1}{2008}\)
\(=\frac{1}{5}-\frac{1}{2008}\left(đpcm\right)\)
Vậy \(A>\frac{1}{2007^2}+\frac{1}{2006^2}+\frac{1}{2005^2}+...+\frac{1}{7^2}+\frac{1}{6^2}+\frac{1}{5^2}>B\)
Ta có:
\(\left(\frac{1}{1.101}+\frac{1}{2.102}+\frac{1}{3.103}+...+\frac{10}{10.110}\right)x=\)\(\frac{1}{1.11}+\frac{1}{2.12}+...+\frac{1}{100.110}\)
\(\Rightarrow\left(\frac{100}{1.101}+\frac{100}{2.202}+\frac{100}{3.303}+...+\frac{100}{10.101}\right)x=\)\(10.\left(\frac{10}{1.11}+\frac{10}{2.12}+...+\frac{10}{100.110}\right)\)
\(\Rightarrow\left(1-\frac{1}{101}+\frac{1}{2}-\frac{1}{102}+...+\frac{1}{10}-\frac{1}{110}\right)x=\)\(10.\left(1-\frac{1}{11}+\frac{1}{2}-\frac{1}{12}+...+\frac{1}{100}-\frac{1}{110}\right)\)
\(\Rightarrow\left[\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)-\left(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{110}\right)\right]x\)\(=\)\(10.\left[\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{110}\right)\right]\)
\(\Rightarrow\left[ \left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)-\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{110}\right)\right]x=\)\(10.\left[\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)-\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{110}\right)\right]\)
\(\Rightarrow x=10\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
=\(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)
=\(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)
=\(\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)
Do \(\left|a\right|\ge0\) nên:
a) \(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+...+\left|x+\frac{100}{101}\right|=101x\ge0\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{101}+\frac{2}{101}+...+\frac{100}{101}\right)=101x\) (100 số hạng x)
\(\Leftrightarrow100x+5050=101x\Leftrightarrow201x=5050\Leftrightarrow x=\frac{5050}{201}\)
b) Đề sai nhé!