K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2017

Sửa đề đi bạn

9 tháng 5 2020

B = \(\frac{8}{9}+\frac{24}{25}+\frac{48}{49}+...+\frac{200.202}{201^2}=\left(1-\frac{1}{3^2}\right)+\left(1-\frac{1}{5^2}\right)+\left(1-\frac{1}{7^2}\right)+...+\left(1-\frac{1}{201^2}\right)\)

\(=\left(1+1+1+...+1\right)-\left(\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+...+\frac{1}{201^2}\right)\)

 \(=100-\left(\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+...+\frac{1}{201^2}\right)\)

Ta có Đặt \(C=\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+....+\frac{1}{201^2}\)\

\(< \frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{199.201}=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{199.201}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{199}-\frac{1}{201}\right)=\frac{1}{2}\left(1-\frac{1}{201}\right)=\frac{1}{2}.\frac{200}{201}=\frac{100}{201}< \frac{1}{2}\)

=> C < 1/2

=> B > 100 - 1/2

=> B > 99,5

14 tháng 11 2016

khó quá