K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2016

1.Gộp 3 số vào thành 1 tổng rồi tính:

(1+2^1+2^2)+(2^3+2^4+2^5)+....+(2^37+2^38+2^39)

=1*(1+2^1+2^2)+2^3*(1+2^1+2^2)+....+2^37*(1+2^1+2^2)

=1*15+2^3*15+...+2^37*15

=15*(1+2^3+...+2^39) chia hết cho 15

29 tháng 7 2019

Đoán là cậu thiếu dấu gạch ngang trên đầu ok

Bài 1: Ta có: \(\overline{abcdeg}\)\(=10000.\overline{ab}+100.\overline{cd}+\overline{eg}\)

\(=\left(769.13+3\right).\overline{ab}+\left(7.13+9\right).\overline{cd}+\overline{eg}\)

\(=769.13.\overline{ab}+3.\overline{ab}\) + \(7.13.\overline{cd}+9.\overline{cd}\)+\(\overline{eg}\)

\(=\left(769.13.\overline{ab}+7.13.\overline{cd}\right)+(3.\overline{ab}+9.\overline{cd}+\overline{eg})\)

\(=13\left(769.\overline{ab}+7.\overline{cd}\right)+\left(3.\overline{ab}+9.\overline{cd}+\overline{eg}\right)\)

Do \(\left\{{}\begin{matrix}13\left(769.\overline{ab}+7.\overline{cd}\right)⋮13\\3.\overline{ab}+9.\overline{cd}+\overline{eg}⋮13\end{matrix}\right.\)

\(\Rightarrow........⋮13\) ( Phần ..... bạn ghi hai biểu thức ngay trên cộng lại với nhau)

\(\Leftrightarrow\overline{abcdeg}⋮13\)

Bài 2: tương tự

7 tháng 12 2019

a) Ta có : 7101=7.(74)25=7.\(\left(\overline{...1}\right)\)=\(\overline{...7}\)

               75=7.(74)1=7.\(\left(\overline{...1}\right)\)=\(\overline{...7}\)

Mà \(\left(\overline{...7}\right)-\left(\overline{...7}\right)=\overline{...0}⋮10\)

hay 7101-75\(⋮\)10

Vậy 7101-75\(⋮\)10.

31 tháng 12 2022

b: B=3(1+3)+3^3(1+3)+...+3^2009(1+3)

=4(3+3^3+...+3^2009) chia hết cho 4

B=3(1+3+3^2)+3^4(1+3+3^2)+...+3^2008(1+3+3^2)

=13(3+3^4+...+3^2008) chia hết cho 13

c: \(C=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{2009}\left(1+5\right)\)

\(=6\left(5+5^3+...+5^{2009}\right)⋮6\)

\(C=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)\)

\(=31\left(5+5^4+...+5^{2008}\right)⋮31\)

d: \(D=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{2009}\left(1+7\right)\)

\(=8\left(7+7^3+...+7^{2009}\right)⋮8\)

\(D=7\left(1+7+7^2\right)+7^4\left(1+7+7^2\right)+...+7^{2008}\left(1+7+7^2\right)\)

\(=57\left(7+7^4+...+7^{2008}\right)⋮57\)