Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Mình chỉ làm đc bài 1 thôi nhé)
Bài 1:
A = 1 + 2 + 3 + 4 +...+999
2A= (1+999)+(2+998)+(3+997)+...+(999+1)
Ta nhận thấy các kết quả của các tổng trong ngoặc trên đều bằng 1000 (số chẵn), mà các số chia hết cho 2 là số chẵn, suy ra A chia hết cho 2
a) /-28/ + (-42) = 28 +(-42) = -14
b) đặt S = 76+75+74+73+72+7
7S = 7^7+7^6+7^5+7^4+7^3+7^2
7S-S= (7^7+7^6+7^5+7^4+7^3+7^2) - ( 76+75+74+73+72+7)
6S = 77-7 = 823536
S = 823536:6 =137256
a. \(10^{12}+1=1000000000001\) không chia hết cho 3 và 9 suy ra \(10^{12}+1\) không chia hết cho 3 và 9
a, \(B=3+3^2+3^3+3^4+....+3^{99}+3^{100}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+....+\left(3^{99}+3^{100}\right)\)
\(=\left[3\left(1+3\right)\right]+\left[3^3\left(1+3\right)\right]+...+\left[3^{99}\left(1+3\right)\right]\)
\(=3\cdot4+3^3\cdot4+....+3^{99}\cdot4\)
\(=4\left(3+3^3+...+3^{99}\right)\)
\(\Rightarrow B⋮4\)
b, Vì 3 chia hết cho 3
32 chia hết cho 3
.
.
.
3100 chia hết cho 3
\(\Rightarrow B⋮3\)
c,\(B=3+3^2+3^3+3^4+....+3^{99}+3^{100}\)
\(=\left(3+3^2\right)+\left(3^3+2^4\right)+....+\left(3^{99}+3^{100}\right)\)
\(=12+\left[3^2\left(3+3^2\right)\right]+....+\left[3^{97}\left(3+3^2\right)\right]\)
\(=12+3^2\cdot12+....+3^{97}\cdot12\)
\(=12\left(1+3^2+...+3^{97}\right)\)
\(\Rightarrow B⋮12\)
\(A=10^{12}+1\)
\(B=10^{12}+2\)
\(C=10^{12}+7\)
\(D=10^{12}+8\)
\(\Rightarrow A+B+C+D=4.10^{12}+\left(1+2+7+8\right)=4.10^{12}+18\)
Tổng các chữ số của tổng này là \(1+1+8=10\) không chia hết cho 3 nên không chia hết cho 9
Vậy \(A+B+C+D⋮̸\left(3;9\right)\)
A có tổng các chữ số là 2 nên A không chia hết cho 3 và 9
B có tổng các chữ số là 3 nên B chia hết cho 3 mà không chia hết cho 9
C có tổng các chữ số là 8 nên không chia hết cho 3 và 9
D có tổng các chữ số là 9 nên chia hết cho cả 3 và 9