K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: A(x)=5x^4+4x^4+x^2+x^2-x+3

=9x^4+2x^2-x+3

B(x)=-8x^4-x^3-2x^2+3

2: A(x)+B(x)

=9x^4+2x^2-x+3-8x^4-x^3-2x^2+3

=x^4-x^3-x+6

A(x)-B(x)

=9x^4+2x^2-x+3+8x^4+x^3+2x^2-3

=17x^4+x^3+4x^2-x

bậc của A(x)-B(x) là 4

3: P(x)=x^4-x^3-x+6-x^4+x^3=-x+6

P(6)=-6+6=0

=>x=6 là nghiệm của P(x)

1: \(A\left(x\right)=-3x^3+4x^2+4x+3\)

\(B\left(x\right)=-3x^3+4x^2-x+7\)

2: \(A-B=0\)

=>4x+3-x+7=0

=>3x+10=0

hay x=-10/3

1) 

\(A=9-x^3+4x-2x^3+4x^2-6\)

\(A=(9-6)+\left(-x^3-2x^3\right)+4x+4x^2\)

\(A=3-3x^3+4x+4x^2\)

\(A=-3x^3+4x^2+4x+3\)

 

\(B=3+x^3+4x^2+2x^3+7x-6x^3-8x+4\)

\(B=(3+4)+(x^3+2x^3-6x^3)+4x^2+(7x-8x)\)

\(B=7-3x^3+4x^2-x\)

\(B=-3x^3+4x^2-x+7\)

2) \(A-B=(-3x^3+4x^2+4x+3)-\) \((-3x^3+4x^2-x+7)\)

    \(A-B=-3x^3+4x^2+4x+3+\)\(3x^3-4x^2+x-7\)

    \(A-B\) \(=\left(-3x^3+3x^3\right)+\left(4x^2-4x^2\right)+\left(4x+x\right)+\left(3-7\right)\)

    \(A-B\) \(=5x-4\)

Đặt tên cho đa thức \(5x-4\) là \(H\left(x\right)\)

 Cho \(H\left(x\right)=0\) 

hay  \(5x-4=0\)

        \(5x\)       \(=0+4\)

        \(5x\)       \(=4\)

          \(x\)       \(=4:5\)

          \(x\)       \(=\)  \(0,8\)

Vậy \(x=0,8\) không phải là nghiệm của H(\(x\))

MIK KHÔNG CHẮC LÀ CÂU 2 ĐÚNG

 

 

 

 

3 tháng 5 2023

a, \(A\left(x\right)+4x^3-x=-5x^2-2x^3+5+3x^2+2x\\ \Leftrightarrow A\left(x\right)=-5x^2-2x^3+5+3x^2+2x-4x^3+x=\left(-2x^3-4x^3\right)+\left(-5x^2+3x^2\right)+\left(2x+x\right)+5\\ =-6x^3-2x^2+3x+5\)

b,  \(B\left(x\right)=A\left(x\right):\left(x-1\right)=\left(-6x^3-2x^2+3x+5\right):\left(x-1\right)=-6x^2-8x-5\)

Thay \(x=-1\) vào \(B\left(x\right)\)

\(\Rightarrow-6.\left(-1\right)^2-8\left(-1\right)-5=-3\ne0\)

\(\Rightarrow x=-1\) không là nghiệm của B(x) 

29 tháng 6 2020

\(a.A(x)=5x^4-5+6x^3+x^4-5x-12\)

\(=(5x^4+x^4)+6x^3-5x-5-12\)

\(=6x^4+6x^3-5x-17\)

\(B(x)=8x^4+2x^3-2x^4+4x^3-5x-2x^2\)

\(=(8x^4-2x^4)+(2x^3+4x^3)-2x^2-5x\)

\(=6x^4+6x^3-2x^2-5x\)

a, Ta có \(A\left(x\right)=5x^4-5+6x^3+x^4-5x-12\)

\(=6x^4-17+6x^3-5x\)

\(B\left(x\right)=8x^4+2x^3-2x^4+4x^3-5x-2x^2\)

\(=6x^4-5x+6x^3-2x^2\)

Sắp xếp : \(A\left(x\right)=6x^4+6x^3-5x-17\)

\(B\left(x\right)=6x^4+6x^3-2x^2-5x\)

b, Ta có : \(C\left(x\right)=A\left(x\right)+B\left(x\right)\)(thề, đề sai, cho trừ khác ra bn nhé nhưng cx tôn trọng đề vậy =)) 

\(\Leftrightarrow C\left(x\right)=6x^4+6x^3-5x-17+6x^4+6x^3-2x^2-5x\)

\(\Leftrightarrow C\left(x\right)=12x^4+12x^3-10x-17\)

=> vô nghiệm =)) 

28 tháng 8 2023

a) \(A\left(x\right)=3x^3-4x^4-2x^3+4x^4-5x+3\)

\(\Rightarrow A\left(x\right)=-4x^4+4x^4+3x^3-2x^3-5x+3\)

\(\Rightarrow A\left(x\right)=x^3-5x+3\)

\(B\left(x\right)=5x^3-4x^2-5x^3-4x^2-5x-3\)

\(\Rightarrow B\left(x\right)=5x^3-5x^3-4x^2-4x^2-5x-3\)

\(\Rightarrow B\left(x\right)=-8x^2-5x-3\)

b) \(A\left(x\right)+B\left(x\right)=x^3-5x+3+\left(-8x^2-5x-3\right)\)

\(\Rightarrow A\left(x\right)+B\left(x\right)=x^3-5x+3-8x^2-5x-3\)

\(\Rightarrow A\left(x\right)+B\left(x\right)=x^3-8x^2-5x-5x+3-3\)

\(\Rightarrow A\left(x\right)+B\left(x\right)=x^3-8x^2-10x\)

\(A\left(x\right)-B\left(x\right)=x^3-5x+3-\left(-8x^2-5x-3\right)\)

\(\Rightarrow A\left(x\right)-B\left(x\right)=x^3-5x+3+8x^2+5x+3\)

\(\Rightarrow A\left(x\right)-B\left(x\right)=x^3+8x^2-5x+5x+3+3\)

\(\Rightarrow A\left(x\right)-B\left(x\right)=x^3+8x^2+6\)

30 tháng 4 2023

\(a,Q\left(x\right)=-3x^4+4x^3+2x^2+\dfrac{2}{3}-3x-2x^4-4x^3+8x^4+1+3x\\ =\left(-3x^4-2x^4+8x^4\right)+\left(4x^3-4x^3\right)+2x^2+\left(3x-3x\right)+1\\ =3x^4+2x^2+1\\ b,Q\left(x\right)=0\\ \Leftrightarrow3x^4+2x^2+1=0\\ \Delta=b^2-4ac=2^2-4.3.1=-8< 0\)

Vậy Q(x) không có nghiệm

1 tháng 5 2017

bài 3:

a) f(x)= x2+2x4-2x3+x2+5x4+4x3-x+5

= (2x4+5x4)+(4x3-2x3)+(x2+x2)-x+5

= 7x4+2x3+2x2-x+5

g(x)= -2x2+8x4+x-x4-3x3+3x2+5+4x3

=(8x4-x4)+(4x3-3x3)+(3x2-2x2)+x+5

= 7x4+x3+x2+x+5

b) h(x)=f(x)-g(x)

=(7x4+2x3+2x2-x+5)-(7x4+x3+x2+x+5)

=7x4+2x3+2x2-x+5-7x4-x3-x2-x-5

=(7x4-7x4)+(2x3-x3)+(2x2-x2)-(x+x)+(5-5)

=x3+x2-2x

Bài 4:

a) f(x)=5x4+x3-x+11+x4-5x3

=(5x4+x4)+(x3-5x3)-x+11

=6x4-4x3-x+11

g(x)=2x3+3x4+9-4x3+2x4-x

=(3x4+2x4)+(2x3-4x3)-x+9

=5x4-2x3-x+9

b) h(x)=f(x)-g(x)

=(6x4-4x3-x+11)-(5x4-2x3-x+9)

=6x4-4x3-x+11-5x4-2x3-x+9

=(6x4-5x4)-(4x3+2x3)-(x+x)+(11+9)

= x4-6x3-2x+20

c) Với x = -2

Ta có: h(-2)=(-2)4-6.(-2)3-2.(-2)+20=88\(\ne\)0

Vậy x = -2 không phải là nghiệm của đa thức h(x)

đúng thì tặng 1 tick cho mk nk các pn!!!

2 tháng 5 2017

giải câu c ở bài 3 với

`@` `\text {Ans}`

`\downarrow`

`a)`

`P(x) =`\(3x^2+7+2x^4-3x^2-4-5x+2x^3\)

`= (3x^2 - 3x^2) + 2x^4 + 2x^3 - 5x + (7-4)`

`= 2x^4 + 2x^3 - 5x + 3`

`Q(x) =`\(3x^3+2x^2-x^4+x+x^3+4x-2+5x^4\)

`= (5x^4 - x^4) + (3x^3 + x^3) + 2x^2 + (x + 4x)- 2`

`= 4x^4 + 4x^3 + 2x^2 + 5x - 2`

`b)`

`P(-1) = 2*(-1)^4 + 2*(-1)^3 - 5*(-1) + 3`

`= 2*1 + 2*(-1) + 5 + 3`

`= 2 - 2 + 5 + 3`

`= 8`

___

`Q(0) = 4*0^4 + 4*0^3 + 2*0^2 + 5*0 - 2`

`= 4*0 + 4*0 + 2*0 + 5*0 - 2`

`= -2`

`c)`

`G(x) = P(x) + Q(x)`

`=> G(x) = 2x^4 + 2x^3 - 5x + 3 + 4x^4 + 4x^3 + 2x^2 + 5x - 2`

`= (2x^4 + 4x^4) + (2x^3 + 4x^3) + 2x^2 + (-5x + 5x) + (3 - 2)`

`= 6x^4 + 6x^3 + 2x^2 + 1`

`d)`

`G(x) = 6x^4 + 6x^3 + 2x^2 + 1`

Vì `x^4 \ge 0 AA x`

    `x^2 \ge 0 AA x`

`=> 6x^4 + 2x^2 \ge 0 AA x`

`=> 6x^4 + 6x^3 + 2x^2 + 1 \ge 0`

`=> G(x)` luôn dương `AA` `x`

Bài cuối mình không chắc c ạ ;-;

a) P(x) = -2x^2 + 4x^4 – 9x^3 + 3x^2 – 5x + 3

=4x^4-9x^3+x^2-5x+3

Q(x) = 5x^4 – x^3 + x^2 – 2x^3 + 3x^2 – 2 – 5x

=5x^4-3x^3+4x^2-5x-2

b)

P(x)

-bậc:4

-hệ số tự do:3

-hệ số cao nhất:4

Q(x)

-bậc :4

-hệ số tự do :-2

-hệ số cao nhất:5