Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a. Gọi p là một ước chung của 12n + 1 và 30n + 2. Ta có:
12n + 1 chia hết cho d và 30n + 2 chia hết cho d
=> 5 ( 12n + 1 ) - 2 ( 30n + 2 ) chia hết cho d
=> 60n + 5 - 60n + 4 chia hết cho d
=> 1 chia hết cho d. Vậy d =1 hoặc d = -1
Vậy \(\frac{12n+1}{30n+2}\)là phân số tối giản.
Ta có :
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
= \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
= \(1-\frac{1}{100}=\frac{99}{100}< 1\)
Vậy \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\) \(< 1\)
\(\frac{4}{3}.\left(\frac{1}{6}-\frac{1}{2}\right)=\frac{4}{3}.\frac{-1}{3}=\frac{-4}{9}\)
k nha
a) Để biểu thức nguyên
\(\Leftrightarrow2x+3⋮x-1\)
\(\Leftrightarrow2.\left(x-1\right)+5⋮x-1\)
Mà \(2.\left(x-1\right)⋮x-1\)
\(\Rightarrow5⋮x-1\)
Tự tìm x
\(1\)) \(70:\frac{4x+720}{x}=\frac{1}{2}\)
\(\Leftrightarrow\frac{4x+720}{x}=70:\frac{1}{2}\)
\(\Leftrightarrow\frac{4x+720}{x}=140\)
\(\Leftrightarrow\left(4x+720\right):x=140\)
\(\Leftrightarrow4x+720=140.x\)
\(\Leftrightarrow4x-140x=-720\)
\(\Leftrightarrow x.\left(-136\right)=-720\)
\(\Leftrightarrow x=-720:\left(-136\right)\)
\(\Leftrightarrow x=\frac{90}{17}\)
\(2\)) Mình đang nghĩ
a) Để M thuộc Z <=> \(x+2\in B\left(3\right)=\left\{0;3;-3;6;-6;....\right\}\)
<=> x = B(3) - 2
b) Để N thuộc Z <=> 7 chia hết cho x-1
<=> \(x-1\inƯ\left(7\right)=\left\{1;7;-1;-7\right\}\)
Nếu x - 2= 1 thì x = 3
Nếu x - 2 = -1 thì x = 1
Nếu x - 2 = 7 thì x = 9
Nếu x - 2 = -7 thì x = -5
Vậy x = {-5;1;3;9}
a) Để M thuộc Z <=> x+2∈B(3)={0;3;−3;6;−6;....}
<=> x = B(3) - 2
b) Để N thuộc Z <=> 7 chia hết cho x-1
<=> x−1∈Ư(7)={1;7;−1;−7}
Nếu x - 2= 1 thì x = 3
Nếu x - 2 = -1 thì x = 1
Nếu x - 2 = 7 thì x = 9
Nếu x - 2 = -7 thì x = -5
Vậy x = {-5;1;3;9}
a. \(A=\left[\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-4x-1}{\left(x-1\right)\left(x+1\right)}\right].\frac{x+7}{x}\)
\(=\left[\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}+\frac{x^2-4x-1}{\left(x-1\right)\left(x+1\right)}\right].\frac{x+7}{x}\)
\(=\left[\frac{x^2+2x+1-x^2+2x-1+x^2-4x-1}{x^2-1}\right].\frac{x+7}{x}\)
\(=\frac{x^2-1}{x^2-1}.\frac{x+7}{x}\)
\(=\frac{x+7}{x}\)
b. Để A \(\in\)Z thì \(\frac{x+7}{x}\in Z\)
=> x+7 chia hết cho x
Mà x chia hết cho x
=> 7 chia hết cho x
=> x \(\in\)Ư(7)={-7; -1; 1; 7}
Vậy x \(\in\){-7; -1; 1; 7} thì A \(\in\)Z.
Hoàng Bảo Ngọc trình bày cách làm cho tau với