K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2017

ta có P=\(\frac{\sqrt{a-1}}{a}+\frac{\sqrt{b-4}}{b}+\frac{\sqrt{c-9}}{c}\)

Áp dụng bđt cố si ta có 

\(\sqrt{a-1}\le\frac{1}{2}\left(a-1+1\right)=\frac{1}{2}a\Rightarrow\frac{\sqrt{a-1}}{a}\le\frac{1}{2}\)

Tương tự mấy cái kia rồi + vào, để ý dấu = 

1 tháng 7 2020

Bạn tham khảo tại đây ạ!

Câu hỏi của danh Vô - Toán lớp 9 - Học toán với OnlineMath

21 tháng 6 2017

Ta chứng minh 

\(\sqrt{a+bc}\ge1a+\sqrt{bc}\)

\(\Leftrightarrow a\ge a^2+2a\sqrt{bc}\)

\(\Leftrightarrow a\left(1-a-2\sqrt{bc}\right)\ge0\)

\(\Leftrightarrow a\left(b+c-2\sqrt{bc}\right)\ge0\)

\(\Leftrightarrow a\left(\sqrt{b}-\sqrt{c}\right)^2\ge0\)(đúng)

Từ đây ta suy ra được

\(\sqrt{a+bc}+\sqrt{b+ca}+\sqrt{c+ab}\ge a+b+c+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=1+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

21 tháng 6 2017

Một cách chứng minh rất sáng tạo ko lệ thuộc vào cách truyền thống. Cho bn 1 k

21 tháng 6 2017

Áp dụng BĐT Bunhiakovsky:

\(\sqrt{a+bc}=\sqrt{a\left(a+b+c\right)+bc}=\sqrt{\left(a+b\right)\left(a+c\right)}\)

\(\ge\sqrt{\left(\sqrt{a}.\sqrt{a}+\sqrt{b}.\sqrt{c}\right)^2}=a+\sqrt{bc}\)   (1)

Tương tự:  \(\sqrt{b+ca}\ge b+\sqrt{ca}\)   (2)

và:   \(\sqrt{c+ab}\ge c+\sqrt{ab}\)   (3)

Cộng (1), (2) và (3), kết hợp với a+b+c=1 ta có đpcm.

Đẳng thức xảy ra   \(\Leftrightarrow\)  ...   \(\Leftrightarrow\)   \(a=b=c=\frac{1}{3}\)

27 tháng 8 2019

Dạng này chú ý điểm rơi một tí nhé zZz Cool Kid zZz 

Có: \(bc\sqrt{a-2}=\frac{bc}{\sqrt{2}}.\sqrt{2\left(a-2\right)}\le\frac{abc}{2\sqrt{2}}\)

+) \(ca\sqrt[3]{b-6}=\frac{ca}{\sqrt[3]{9}}\sqrt[3]{3.3.\left(b-6\right)}\)\(\le\frac{abc}{3\sqrt[3]{9}}\)

+) \(ab\sqrt[4]{c-12}=\frac{ab}{\sqrt[4]{4^3}}.\sqrt[4]{4.4.4.\left(c-12\right)}\le\frac{abc}{4\sqrt[4]{4^3}}\)

Đến đây cộng theo vế 3 BĐT trên rồi đặt nhân tử chung ra ngoài (nhân tử chung là abc)

Rút gọn đi là xong:) Số quá xấu:(

30 tháng 4 2020

Ta có \(a+b+b+b\ge4\sqrt[4]{abbb}\)(theo BĐT Cosi)

\(\Leftrightarrow a+3b\ge\sqrt[4]{ab^3}\)

\(\Leftrightarrow\frac{a+3b}{4}\ge4\sqrt[4]{ab^3}\)

Mà \(a,b,c\ge1\Rightarrow a+3b\ge4\Rightarrow\frac{a+3b}{4}\ge1\)

\(\Leftrightarrow1+\sqrt[4]{ab^3}\ge1+a\)

\(\Rightarrow\frac{1}{1+\sqrt[4]{ab^3}}\le\frac{1}{1+a}\left(1\right)\)

Tương tự \(\hept{\begin{cases}\frac{1}{1+\sqrt[4]{bc^3}}=\frac{1}{1+b}\left(2\right)\\\frac{1}{1+\sqrt[4]{ca^3}}=\frac{1}{1+c}\left(3\right)\end{cases}}\)

(1) (2) (3) => \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge\frac{1}{1+\sqrt[4]{ab^3+1}}+\frac{1}{1+\sqrt[4]{bc^3}}+\frac{1}{1+\sqrt[4]{ca^3}}\)(đpcm)

NV
18 tháng 2 2020

Trong câu hỏi tương tự có người làm rồi đó bạn:

https://hoc24.vn/hoi-dap/question/513461.html

15 tháng 5 2018

Ta có: \(P=\frac{ab}{\sqrt{ab+2c}}+\frac{bc}{\sqrt{bc+2a}}+\frac{ca}{\sqrt{ca+2b}}\) 

\(P=\frac{ab}{\sqrt{ab+\left(a+b+c\right)c}}+\frac{bc}{\sqrt{bc+\left(a+b+c\right)a}}+\frac{ca}{\sqrt{ca+\left(a+b+c\right)b}}\) 

\(P=\frac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}+\frac{bc}{\sqrt{\left(b+a\right)\left(c+a\right)}}+\frac{ca}{\sqrt{\left(c+b\right)\left(a+b\right)}}\) 

\(P=\sqrt{\frac{ab}{\left(a+c\right)}.\frac{ab}{\left(b+c\right)}}+\sqrt{\frac{bc}{b+a}.\frac{bc}{c+a}}+\sqrt{\frac{ca}{c+b}.\frac{ca}{a+b}}\le\frac{1}{2}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{bc}{b+a}+\frac{bc}{c+a}+\frac{ca}{c+b}+\frac{ca}{a+b}\right)=\frac{\left(a+b+c\right)}{2}=1\)

Vậy Max P=1 khi \(a=b=c=\frac{2}{3}\)

15 tháng 5 2018

\(P=\Sigma\dfrac{ab}{\sqrt{ab+2c}}=\Sigma\dfrac{ab}{\sqrt{ab+\left(a+b+c\right)c}}=\Sigma\dfrac{\sqrt{ab}.\sqrt{ab}}{\sqrt{\left(a+c\right)\left(b+c\right)}}\le\dfrac{1}{2}.\Sigma\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}\right)\) \(=\dfrac{1}{2}.\left(a+b+c\right)=1\) 

7 tháng 6 2019

Hiển nhiên \(T\ge0.\)Dấu '=' xảy ra khi \(a=4,b=9\)(thỏa mãn đkxđ)

Vậy giá trị nhỏ nhất của T=0.

Ta có \(T=\frac{\sqrt{a-4}}{a}+\frac{\sqrt{b-9}}{b},\)theo bất đẳng thức Cauchy cho 2 số không âm ta có

\(a=a-4+4\ge2\sqrt{4\left(a-4\right)}=4\sqrt{a-4}\Rightarrow\frac{\sqrt{a-4}}{a}\le\frac{1}{4}.\)

Dấu '=' xảy ra khi \(a-4=4\Leftrightarrow a=8\) (thỏa mãn đkxđ)

Tương tự \(\frac{\sqrt{b-9}}{b}\le\frac{1}{6}.\)Dấu '=' xảy ra khi \(b-9=9\Leftrightarrow b=18.\)(thỏa mãn đkxđ)

Vậy \(T\le\frac{1}{4}+\frac{1}{6}=\frac{5}{12}.\)Do đó giá trị lớn nhất của T=5/12 khi a=8 và b=18

26 tháng 12 2017

\(A=\sum\sqrt{\dfrac{ab}{c+ab}}=\sum\sqrt{\dfrac{ab}{c^2+ca+cb+ab}}\)

\(=\sum\sqrt{\dfrac{ab}{\left(c+a\right)\left(c+b\right)}}\le\dfrac{1}{2}\left(\dfrac{a}{c+a}+\dfrac{b}{c+b}+\dfrac{b}{a+b}+\dfrac{c}{a+c}+\dfrac{a}{b+a}+\dfrac{c}{b+c}\right)\)

\(=\dfrac{1}{2}.3=\dfrac{3}{2}\)