Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a)\(\frac{3}{4}-0,25-\left[\frac{7}{3}+\left(-\frac{9}{2}\right)\right]-\frac{5}{6}\)
\(=\frac{3}{4}-\frac{1}{4}-\frac{14}{6}+\frac{27}{6}-\frac{5}{6}\)
\(=\frac{1}{2}-\frac{4}{3}\)
\(=-\frac{5}{6}\)
b)\(7+\left(\frac{7}{12}-\frac{1}{2}+3\right)-\left(\frac{1}{12}+5\right)\)
\(=7+\frac{1}{12}+3-\frac{1}{12}-5\)
\(=5\)
Câu 2:
\(\frac{3}{4}-\frac{5}{6}\le\frac{x}{12}< 1-\left(\frac{2}{3}-\frac{1}{4}\right)\)
\(-\frac{1}{12}\le\frac{x}{12}< 1-\frac{5}{12}\)
\(-\frac{1}{12}\le\frac{x}{12}< \frac{7}{12}\)
Vậy -1\(\le\)x<7
Bài 1
\(=-\frac{21}{60}=-\frac{7}{20}\)
\(b,\left(2-\frac{1}{3}\right)^2+|-\frac{5}{6}|+\frac{-7}{12}-\frac{25}{9}\)
\(=\frac{25}{9}+\frac{5}{6}-\frac{7}{12}-\frac{25}{9}\)
\(=\left(\frac{25}{9}-\frac{25}{9}\right)+\left(\frac{5}{6}-\frac{7}{12}\right)\)
\(=0+\frac{1}{4}=\frac{1}{4}\)
Bài 2
\(a,x+\frac{2}{5}=-\frac{3}{10}\)
\(x=-\frac{3}{10}-\frac{2}{5}\)
\(x=-\frac{3}{10}-\frac{4}{10}\)
\(x=-\frac{7}{10}\)
\(b,|\frac{2}{3}+x|=\frac{5}{7}\)
\(\Rightarrow\orbr{\begin{cases}\frac{2}{3}+x=\frac{5}{7}\\\frac{2}{3}+x=-\frac{5}{7}\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{5}{7}-\frac{2}{3}\\x=-\frac{5}{7}-\frac{2}{3}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{1}{21}\\x=-\frac{29}{21}\end{cases}}}\)
== chắc trog quá trình lm lỡ xóa đó
\(a,-\frac{3}{4}.\frac{7}{15}\)
\(=-\frac{21}{60}=-\frac{7}{20}\)
với lại bài trên mk tính nhẩm ko bấm máy sai == sửa giúp
a, \(\left|x+\frac{1}{3}\right|=0\Leftrightarrow x=-\frac{1}{3}\)
b, \(\left|\frac{5}{18}-x\right|-\frac{7}{24}=0\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{18}-x=\frac{7}{24}\\\frac{5}{18}-x=-\frac{7}{24}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{72}\\x=\frac{41}{72}\end{cases}}\)
c, \(\frac{2}{5}-\left|\frac{1}{2}-x\right|=6\Leftrightarrow\left|\frac{1}{2}-x\right|=-\frac{28}{5}\)vô lí
Vì \(\left|\frac{1}{2}-x\right|\ge0\forall x\)*luôn dương* Mà \(-\frac{28}{5}< 0\)
=> Ko có x thỏa mãn
\(|x+\frac{1}{3}|=0\)
\(< =>x+\frac{1}{3}=0< =>x=-\frac{1}{3}\)
\(|x+\frac{3}{4}|=\frac{1}{2}\)
\(< =>\orbr{\begin{cases}x+\frac{3}{4}=\frac{1}{2}\\x+\frac{3}{4}=-\frac{1}{2}\end{cases}}\)
\(< =>\orbr{\begin{cases}x=-\frac{1}{4}\\x=-\frac{5}{4}\end{cases}}\)
a) \(\frac{11}{24}-\frac{5}{41}+\frac{13}{24}+0,5-\frac{36}{41}\)
= \(\frac{11}{24}-\frac{5}{41}+\frac{13}{24}+\frac{1}{2}-\frac{36}{41}\)
= \(\frac{1}{2}-\left\{\frac{11}{24}+\frac{13}{24}\right\}-\left\{\frac{5}{41}+\frac{36}{41}\right\}\)
=\(\frac{1}{2}-\frac{24}{24}-\frac{41}{41}\)
=\(\frac{1}{2}-1-1\)
=\(\frac{-3}{2}\)
b) \(-12:\left\{\frac{3}{4}-\frac{5}{6}\right\}^2\)
= \(-12:\left\{\frac{9}{12}-\frac{10}{12}\right\}^2\)
= \(-12:\left\{\frac{-1}{12}\right\}^2\)
= \(-12:\frac{1}{144}\)
= \(-12.144\)
= -1728
c) \(\frac{7}{23}.\left[\left(\frac{-8}{6}\right)-\frac{45}{18}\right]\)
= \(\frac{7}{23}.\left[\left(\frac{-24}{18}\right)-\frac{45}{18}\right]\)
= \(\frac{7}{23}.\left(\frac{-23}{6}\right)\)
= \(\frac{-7}{6}\)
d) \(23\frac{1}{4}.\frac{7}{5}-13\frac{1}{4}:\frac{5}{7}\)
= \(23\frac{1}{4}.\frac{7}{5}-13\frac{1}{4}.\frac{7}{5}\)
= \(\left\{23\frac{1}{4}-13\frac{1}{4}\right\}.\frac{7}{5}\)
= \(10.\frac{7}{5}\)
= 14
e) (1+23−14).(0,8−34)2
= (1+23−14).(\(\frac{4}{5}\)−34)2
= \(\left(\frac{12}{12}+\frac{8}{12}-\frac{3}{12}\right).\left(\frac{16}{20}-\frac{15}{20}\right)^2\)
= \(\frac{17}{12}.\left(\frac{1}{20}\right)^2\)
= \(\frac{17}{20}.\frac{1}{400}\)
= \(\frac{17}{8000}\)
1
- fddfssdfdsfdssssssssssssssffffffffffffffffffsssssssssssssssssssfsssssssssssssssssssssssfffffffffffffff
Ez lắm =)
Bài 1:
Với mọi gt \(x,y\in Q\) ta luôn có:
\(x\le\left|x\right|\) và \(-x\le\left|x\right|\)
\(y\le\left|y\right|\) và \(-y\le\left|y\right|\Rightarrow x+y\le\left|x\right|+\left|y\right|\) và \(-x-y\le\left|x\right|+\left|y\right|\)
Hay: \(x+y\ge-\left(\left|x\right|+\left|y\right|\right)\)
Do đó: \(-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)
Vậy: \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
Dấu "=" xảy ra khi: \(xy\ge0\)
a) Sửa đề \(\frac{-3}{x+1}=\frac{x+1}{-12}\)
<=> (x + 1)(x + 1) = (-12).(-3)
<=> (x + 1)2 = 36
<=> \(\orbr{\begin{cases}x+1=6\\x+1=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-7\end{cases}}\)
b) \(\frac{x}{5}=-\frac{x+24}{3}\)
=> 3x = -(x + 24).5
<=> 3x = -5x - 120
<=> 8x = -120
<=> x = -15
Vậy x = -15
c) \(\frac{x+2}{x+1}=\frac{x-4}{x-2}\)
<=> \(\frac{x+2}{x+1}-1=\frac{x-4}{x-2}-1\)
<=> \(\frac{1}{x+1}=\frac{-2}{x-2}\)
<=> (x - 2).1 = -2(x + 1)
<=> x - 2 = -2x - 2
<=> 3x = 0
<=> x = 0
Vậy x = 0
d) \(\frac{x+4}{y+7}=\frac{4}{7}\)
<=> \(\frac{x+4}{4}=\frac{y+7}{7}=\frac{x+4+y+7}{4+7}=\frac{x+y+11}{11}=\frac{22+11}{11}=3\)(dãy tỉ số bằng nhau)
<=> \(\hept{\begin{cases}\frac{x+4}{4}=3\\\frac{y+7}{7}=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x+4=12\\y+7=21\end{cases}}\Leftrightarrow\hept{\begin{cases}x=8\\y=14\end{cases}}\)
a ) \(-\frac{3}{x+1}=\frac{x+1}{-12}\)
\(\Leftrightarrow\)\(\left(x+1\right).\left(x+1\right)=-3.\left(-12\right)\)
\(\Leftrightarrow\)\(\left(x+1\right)^2=36\)
\(\Leftrightarrow\)\(\left(x+1\right)^2=\pm6\)
\(\Rightarrow\orbr{\begin{cases}x+1=6\\x+1=-6\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=5\\x=-7\end{cases}}\)
b ) \(\frac{x}{5}=\frac{x+24}{3}\)
\(\Leftrightarrow\)\(3x=\left(x+24\right).5\)
\(\Leftrightarrow\)\(3x=5x+120\)
\(\Leftrightarrow\)\(-2x=120\)
\(\Leftrightarrow\)\(x=-60\)
d ) \(\frac{x+4}{7+y}=\frac{4}{7}\)
\(\Leftrightarrow\)\(\frac{x+4}{4}=\frac{7+y}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x+4}{4}=\frac{7+y}{7}=\frac{\left(x+y\right)+\left(4+7\right)}{4+7}=\frac{22+11}{11}=\frac{33}{11}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x+4}{4}=3\\\frac{7+y}{7}=3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x+4=12\\7+y=21\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=8\\y=14\end{cases}}\)
a, | x + 1/5 | - 4 = - 2
| x + 1/5 | = - 2 + 4
| x + 1/5 | = 2
=> x + 1/5 = 2 hoặc x + 1/5 = -2
=> x = 9/5 hoặc x = -11/5
\(a,\left|x+\frac{1}{5}\right|-4=-2\)
\(\left|x+\frac{1}{5}\right|=-2+4\)
\(\left|x+\frac{1}{5}\right|=2\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{1}{5}=2\\x+\frac{1}{5}=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{9}{5}\\x=-\frac{11}{5}\end{cases}}}\)
\(b,-\frac{15}{12}x+\frac{3}{7}=\frac{6}{5}x-\frac{1}{2}\)
\(\frac{6}{5}x+\frac{5}{4}x=\frac{3}{7}+\frac{1}{2}\)
\(\left(\frac{6}{5}+\frac{5}{4}\right)x=\frac{13}{14}\)
\(\frac{49}{20}x=\frac{13}{14}\)
\(x=\frac{130}{343}\)
a)
\(A=\left(\frac{19}{24}-\frac{7}{24}\right)-\left(\frac{1}{2}+\frac{1}{3}\right)\)
\(A=\frac{1}{2}-\frac{1}{2}+\frac{1}{3}\)
\(A=\frac{1}{3}\)
\(B=\left(\frac{7}{12}-\frac{5}{12}\right)+\left(\frac{5}{6}+\frac{1}{4}-\frac{3}{7}\right)\)
\(B=\left(\frac{1}{6}+\frac{5}{6}\right)+\frac{1}{4}-\frac{3}{7}\)
\(B=\frac{5}{4}-\frac{3}{7}\)
\(B=\frac{23}{28}\)
b)
\(x=A-B\)
\(x=\frac{1}{3}-\frac{23}{28}\)
\(x=\frac{-41}{84}\)