K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2018

a) \(A=\frac{1}{1\cdot3\cdot5}+\frac{1}{3\cdot5\cdot7}+...+\frac{1}{25\cdot27\cdot29}\)

   \(\Rightarrow4A=\frac{4}{1\cdot3\cdot5}+\frac{4}{3\cdot5\cdot7}+...+\frac{4}{25\cdot27\cdot29}\)

\(\Rightarrow4A=\frac{1}{1\cdot3}-\frac{1}{3\cdot5}+\frac{1}{3\cdot5}-\frac{1}{5\cdot7}+...+\frac{1}{25\cdot27}-\frac{1}{27\cdot29}\)

\(\Rightarrow4A=\frac{1}{1\cdot3}-\frac{1}{27\cdot29}=\frac{1}{3}-\frac{1}{783}=\frac{261}{783}-\frac{1}{783}=\frac{260}{783}\)

\(\Rightarrow A=\frac{\frac{260}{783}}{4}=\frac{65}{783}\)

b) \(\left(\frac{1}{1\cdot101}+\frac{1}{2\cdot102}+...+\frac{1}{10\cdot110}\right)x=\frac{1}{1\cdot11}+\frac{1}{2\cdot12}+...+\frac{1}{100\cdot110}\)

\(\Rightarrow100\cdot\left(\frac{1}{1\cdot101}+\frac{1}{2\cdot102}+...+\frac{1}{10\cdot110}\right)x=100\cdot\left(\frac{1}{1\cdot11}+\frac{1}{2\cdot12}+...+\frac{1}{100\cdot110}\right)\)

\(\Rightarrow\left(\frac{100}{1\cdot101}+\frac{100}{2\cdot102}+...+\frac{100}{10\cdot110}\right)x=10\cdot\left(\frac{10}{1\cdot11}+\frac{10}{2\cdot12}+...+\frac{10}{100\cdot110}\right)\)

\(\Rightarrow\left(1-\frac{1}{101}+\frac{1}{2}-\frac{1}{102}+...+\frac{1}{10}-\frac{1}{110}\right)x=10\cdot\left(1-\frac{1}{10}+\frac{1}{2}-\frac{1}{12}+...+\frac{1}{100}-\frac{1}{110}\right)\)

\(\Rightarrow\left(1-\frac{1}{101}+\frac{1}{2}-\frac{1}{102}+...+\frac{1}{10}-\frac{1}{110}\right)x=10\cdot\left(1-\frac{1}{101}+\frac{1}{2}-\frac{1}{102}+...+\frac{1}{10}-\frac{1}{110}\right)\)

\(\Rightarrow x=10\cdot\)

25 tháng 11 2018

Trả lời:

bạn tham khảo ở link này: https://h.vn/hoi-dap/question/227001.html

Học tốt

25 tháng 11 2018

ta có : \(\frac{1}{n\left(1980-n\right)}=\frac{1}{1980}\left(\frac{1}{n}-\frac{1}{1980+n}\right)\)       ( 1 )

           \(\frac{1}{m\left(25+m\right)}=\frac{1}{25}\left(\frac{1}{m}-\frac{1}{25+m}\right)\)               ( 2 )

áp dụng triển khai  (1) cho mỗi số hạng của  A và triển khai (2) cho mỗi số hạng B , ta được :

\(A=\frac{1}{1980}\left(\frac{1}{1}-\frac{1}{1981}+\frac{1}{2}-\frac{1}{1982}+....+\frac{1}{25}-\frac{1}{2005}\right)\)

     \(=\frac{1}{1980}\left[\left(\frac{1}{1}+\frac{1}{2}+....+\frac{1}{25}\right)-\left(\frac{1}{1981}+\frac{1}{1982}+...+\frac{1}{2005}\right)\right]\)    (3)

\(B=\frac{1}{25}\left(\frac{1}{1}-\frac{1}{26}+\frac{1}{2}-\frac{1}{27}+....+\frac{1}{1980}-\frac{1}{2005}\right)\)

    \(=\frac{1}{25}\left[\left(\frac{1}{1}+\frac{1}{2}+....+\frac{1}{1980}\right)-\left(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{2005}\right)\right]\)

nhận thấy hai biểu thức trong hai dấu ngoặc vế bên phải của B có phần chung là :

\(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{1980}\) . do đó , sau khi rút gọn , ta được :

\(B=\frac{1}{25}\left[\left(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{25}\right)-\left(\frac{1}{1981}+\frac{1}{1982}+...+\frac{1}{2005}\right)\right]\)   (4)

từ (3) Và (4)  :

\(\Rightarrow A:B=\frac{25}{1980}\) 

vậy , ta được \(\frac{A}{B}=\frac{25}{1980}=\frac{5}{396}\)

25 tháng 9 2015

\(A=\frac{1}{1980}.\left(\frac{1981-1}{1.1981}+\frac{1982-2}{2.1982}+...+\frac{1980+n-n}{n\left(1980+n\right)}+...+\frac{2005-25}{25.2005}\right)\)

\(A=\frac{1}{1980}.\left(\frac{1}{1}-\frac{1}{1981}+\frac{1}{2}-\frac{1}{1982}+...+\frac{1}{n}-\frac{1}{1980+n}+...+\frac{1}{25}-\frac{1}{2005}\right)\)

\(A=\frac{1}{1980}.\left(\left(\frac{1}{1}+\frac{1}{2}...+\frac{1}{25}\right)-\left(\frac{1}{1981}+\frac{1}{1982}+...+\frac{1}{2005}\right)\right)\) (1)

\(B=\frac{1}{25}.\left(\frac{26-1}{1.26}+\frac{27-2}{2.27}+...+\frac{25+m-m}{m\left(25+m\right)}+...+\frac{2005-1980}{1980.2005}\right)\)

\(B=\frac{1}{25}.\left(\frac{1}{1}-\frac{1}{26}+\frac{1}{2}-\frac{1}{27}+...+\frac{1}{m}-\frac{1}{25+m}+...+\frac{1}{1980}-\frac{1}{2005}\right)\)

\(B=\frac{1}{25}.\left(\left(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{25}+\frac{1}{26}+...+\frac{1}{1980}\right)-\left(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{1980}+\frac{1}{1981}+...+\frac{1}{2005}\right)\right)\)

\(B=\frac{1}{25}.\left(\left(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{25}\right)-\left(\frac{1}{1981}+\frac{1}{1982}+...+\frac{1}{2005}\right)\right)\) (2)

Từ (1)(2) => A/ B = \(\frac{1}{1980}:\frac{1}{25}=\frac{5}{396}\)

 

13 tháng 1 2019

chịch

30 tháng 3 2016

bai nay de ma

30 tháng 3 2016

õgrwf

25 tháng 3 2017

Ta có: \(\frac{1}{n.\left(1980-n\right)}\)=\(\frac{1}{1980}\).\(\left(\frac{1}{n}-\frac{1}{1980+n}\right)\)                                                                                                   (1)

           \(\frac{1}{m.\left(25+m\right)}\)=\(\frac{1}{25}\).\(\left(\frac{1}{25}-\frac{1}{25+m}\right)\)                                                                                                           (2)

Áp dụng khai triển (1) cho mỗi số hạng của A và khai triển (2) cho mỗi số hạng của B, ta được:

A=\(\frac{1}{1980}\).\(\left(\frac{1}{1}-\frac{1}{1981}+\frac{1}{2}-\frac{1}{1982}+...+\frac{1}{25}-\frac{1}{2005}\right)\)

  =\(\frac{1}{1980}\).\(\left[\left(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{25}\right)-\left(\frac{1}{1981}+\frac{1}{1982}+...+\frac{1}{2005}\right)\right]\)                                                     (3)

Nhận thấy hai biểu thức trong hai dấu ngoặc vế bên phải của B có phần chung là:\(\frac{1}{26}\)+\(\frac{1}{27}\)+...+\(\frac{1}{1980}\).Do đó, sau khi rút gọn, ta được:

B=\(\frac{1}{25}\).\(\left[\left(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{25}\right)-\left(\frac{1}{1981}+\frac{1}{1982}+...+\frac{1}{2005}\right)\right]\)                                                          (4)

Từ (3) và (4), suy ra: A:B=\(\frac{25}{1980}\)=\(\frac{5}{396}\)

Vậy ta được \(\frac{A}{B}\)=\(\frac{5}{396}\)

25 tháng 3 2017

5/396

6 tháng 6 2018

Gọi tử số là \(C\)và mẫu số là \(D\)

Ta có:

\(A=\frac{C}{D}\)

\(C=\frac{1}{1.300}+\frac{1}{2.301}+\frac{1}{3.102}+...+\frac{1}{101.400}\)

\(C=\frac{1}{299}\left[\left(1-\frac{1}{300}\right)\right]+\left(\frac{1}{2}-\frac{1}{301}\right)+\left(\frac{1}{3}-\frac{1}{302}\right)+...+\left(\frac{1}{101}-\frac{1}{400}\right)\)

\(C=\frac{1}{299}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{101}-\frac{1}{300}-\frac{1}{301}-\frac{1}{302}-...-\frac{1}{400}\right)\)

\(D=\frac{1}{1.102}+\frac{1}{2.103}+\frac{1}{3.104}+...+\frac{1}{299.400}\)

\(D=\frac{1}{101}\left[\left(1-\frac{1}{102}\right)+\left(\frac{1}{2}-\frac{1}{103}\right)+\left(\frac{1}{3}-\frac{1}{104}\right)+...+\left(\frac{1}{299}-\frac{1}{400}\right)\right]\)

\(D=\frac{1}{101}\left(1+\frac{1}{2}+\frac{1}{3}+..+\frac{1}{299}-\frac{1}{102}-\frac{1}{103}-\frac{1}{104}-...-\frac{1}{400}\right)\)

\(D=\frac{1}{101}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{101}-\frac{1}{300}-\frac{1}{301}-\frac{1}{302}-...-\frac{1}{400}\right)\)

\(\Rightarrow A=\frac{C}{D}=\frac{\frac{1}{299}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{101}-\frac{1}{300}-\frac{1}{301}-\frac{1}{302}-...-\frac{1}{400}\right)}{\frac{1}{101}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{101}-\frac{1}{300}-\frac{1}{301}-\frac{1}{302}-...-\frac{1}{400}\right)}\)

                     \(=\frac{\frac{1}{299}}{\frac{1}{101}}=\frac{101}{299}.\)

Vậy \(A=\frac{101}{299}.\)

6 tháng 6 2018

Cần lắm k, t lười lắm :))