Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{9.10}-\frac{1}{8.9}-\frac{1}{7.8}-\frac{1}{6.7}-\frac{1}{5.6}-\frac{1}{4.5}-\frac{1}{3.4}-\frac{1}{2.3}-\frac{1}{1.2}\)
\(=-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\right)+\frac{1}{9.10}\)
\(=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\right)+\frac{1}{90}\)
\(=-\left(1-\frac{1}{10}\right)+\frac{1}{90}\)
\(=-\frac{9}{10}+\frac{1}{90}\)
= ...
bn tự tính nha!
\(B=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(B=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)
\(B=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(B< \frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\)
\(B< \frac{50}{60}\Leftrightarrow B< \frac{5}{6}\)
\(\frac{1}{1.2}+\frac{1}{3.4}+......+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{3}-....+\frac{1}{49}-\frac{1}{50}=\left(1+\frac{1}{3}+....+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{50}\right)=\left(1+\frac{1}{2}+.....+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)=\left(1+\frac{1}{2}+....+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{25}\right)=\frac{1}{26}+\frac{1}{27}+....+\frac{1}{50}\left(đpcm\right)\)
\(theocaua\Rightarrow A=\frac{1}{26}+\frac{1}{27}+......+\frac{1}{50}>\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\left(5sohang\right)+\frac{1}{40}+\frac{1}{40}+....+\frac{1}{40}\left(10sohang\right)+\frac{1}{50}+\frac{1}{50}+....+\frac{1}{50}\left(10sohang\right)=\frac{1}{4}+\frac{1}{5}+\frac{1}{6}=\frac{37}{60}>\frac{35}{60}=\frac{7}{12}\left(1\right)\)
\(A=\frac{1}{26}+\frac{1}{27}+....+\frac{1}{50}< \frac{1}{25}+\frac{1}{25}+...+\frac{1}{25}\left(5sohang\right)+\frac{1}{30}+\frac{1}{30}+....+\frac{1}{30}\left(10sohang\right)+\frac{1}{40}+\frac{1}{40}+.....+\frac{1}{40}\left(10sohang\right)=\frac{1}{4}+\frac{1}{3}+\frac{1}{5}=\frac{47}{60}< \frac{5}{6}=\frac{50}{60}\left(2\right)\) \(\left(1\right);\left(2\right)\Rightarrow\frac{7}{12}< A< \frac{5}{6}\)
\(B=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{9}-\frac{1}{10}\)
\(B=\frac{1}{3}-\frac{1}{10}\)
\(B=\frac{7}{30}\)
- \(A=\frac{1}{3.4}-\frac{1}{4.5}-\frac{1}{5.6}-\frac{1}{6.7}-\frac{1}{7.8}-\frac{1}{8.9}-\frac{1}{9.10}\)
A= 1/3 + 1/4-1/4+1/5-1/5+1/6-1/6+1/7-1/7+1/8-1/8+1/9-1/9+1/10
A=1/3+1/10
A=13/30
a,\(A=\frac{1}{3.4}-\frac{1}{4.5}-\frac{1}{5.6}-....-\frac{1}{8.9}-\frac{1}{9.10}\)
\(=\frac{1}{12}-\left(\frac{1}{4.5}+\frac{1}{5.6}+....+\frac{1}{8.9}+\frac{1}{9.10}\right)\)
\(=\frac{1}{12}-\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
\(=\frac{1}{12}-\frac{1}{4}+\frac{1}{10}=\frac{5}{60}-\frac{15}{60}+\frac{6}{60}=\frac{-1}{15}\)
Vậy \(A=\frac{-1}{15}\)
Ta có: 1/1.2 = 1- 1/2
1/3.4 = 1/3 - 1/4
...............
1/19.20 = 1/19 - 1/20
Cộng vế với vế ta đc:
A = 1- 1/20 = 19/20
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{17.18}+\frac{1}{19.20}\)
\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{17}-\frac{1}{18}+\frac{1}{19}-\frac{1}{20}\)
\(A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{17}+\frac{1}{19}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+..+\frac{1}{18}+\frac{1}{20}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{18}+\frac{1}{20}\right)\)
\(A=\left(1+\frac{1}{2}+...+\frac{1}{20}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{9}+\frac{1}{10}\right)\)
\(A=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{19}+\frac{1}{20}\)
\(\frac{A}{B}=1\)
\(B=\frac{1}{3.4}-\frac{1}{4.5}-\frac{1}{5.6}-\frac{1}{6.7}-\frac{1}{7.8}-\frac{1}{8.9}-\frac{1}{9.10}\)
\(\Rightarrow B=\frac{1}{3.4}-\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\right)\)
\(\Rightarrow B=\frac{1}{12}-\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
\(\Rightarrow B=\frac{1}{3}-\frac{1}{4}-\left(\frac{1}{4}-\frac{1}{10}\right)\)
\(\Rightarrow B=\frac{1}{12}-\frac{6}{40}\)
\(\Rightarrow B=\frac{-1}{15}\)
Ta có:
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{9.10}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10}\)
\(\Rightarrow A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{9}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{10}\right)\)
\(\Rightarrow A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{9}+\frac{1}{10}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{10}\right)\)
\(\Rightarrow A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{9}+\frac{1}{10}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)\)
\(\Rightarrow A=\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}\)
\(\Rightarrow A=\left(\frac{1}{6}+\frac{1}{10}\right)+\left(\frac{1}{7}+\frac{1}{9}\right)+\frac{1}{8}\)
\(\Rightarrow A=\left(\frac{10}{6.10}+\frac{6}{6.10}\right)+\left(\frac{9}{7.9}+\frac{7}{7.9}\right)+\frac{8}{8.8}\)
\(\Rightarrow A=\frac{16}{6.10}+\frac{16}{7.9}+\frac{8}{8.8}\)
\(\Rightarrow A=8\left(\frac{2}{6.10}+\frac{2}{7.9}+\frac{1}{8.8}\right)\)
Ta lại có:
\(B=\frac{1}{6.10}+\frac{1}{7.9}+\frac{1}{8.8}+\frac{1}{9.7}+\frac{1}{10.6}\)
\(\Rightarrow B=\left(\frac{1}{6.10}+\frac{1}{6.10}\right)+\left(\frac{1}{7.9}+\frac{1}{7.9}\right)+\frac{1}{8.8}\)
\(\Rightarrow B=\frac{2}{6.10}+\frac{2}{7.9}+\frac{1}{8.8}\)
Vậy :
\(A:B=8\left(\frac{2}{6.10}+\frac{2}{7.9}+\frac{1}{8.8}\right):\left(\frac{2}{6.10}+\frac{2}{7.9}+\frac{1}{8.8}\right)=8\)
Vậy \(A:B=8\)