Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng (111a + 23b) + (9a + 13b) = 120a + 36b
=> 9a + 13b = (120a + 36b) - (111a + 23b)
Vì 120a + 36b chia hết cho 12 và 111a + 23b chia hết cho 12
=> (120a + 36b) - (111a + 23b) chia hết cho 12
=> 9a + 13b chia hết cho 12
Đặt A = 111a + 23b và B = 9a + 13b
Xét A + B = 111a + 23b + 9a + 13b
=> A + B = 120a + 36b
=> A + B = 12 ( 10a + 3b )
=> A + B chia hết cho 12
mà A chia hết cho 12 ( theo đề bài )
=> B chia hết cho 13
hay 9a + 13b chia hết cho 12
b)=3^1+(3^2+3^3+3^4)+(3^5+3^6+3^7)+....+(3^58+3^59+3^60)
=3^1+(3^2.1+3^2.3+3^2.9)+(3^5.1+3^5.3+3^5.9)+......+(3^58.1+3^58.3+3^58.9)
=3^1+3^2.(1+3+9)+3^5.(1+3+9)+.....+3^58.(1+3+9)
=3+3^2.13+3^5.13+.........+3^58.13
=3.13.(3^2+3^5+....+3^58)
vi tich tren co thua so 13 nen tich do chia het cho 13
=
bai1
a) A=(31+32)+(33+34)+...+(359+360)
=(3^1.1+3^1.3)+...+(3^59.1+3^59.2)
=3^1.(1+3)+...+3^59.(1+3)
=3^1.4+....+3^59.4
=4.(3^1+...+3^59)
vi tich tren co thua so 4 nen tich do chia het cho 4
Một đội viên gần 60 nam và nữ dự định chia thành các nhóm sao cho nam vs nữ mỗi nhóm đều nhau hỏi a có thể chia thành mấy nhóm ? lúc đó mỗi nhóm có bao nhiêu nam vs nữ b có tất cả mấy cách CHIA
Giải
Bài 1:
a) Ta có: A=3+32+33+34+........+359+360=(3+32)+(33+34)+..........+(359+360)
=12+32x (3+32)+.......+358 x (3+32)=12+32 x 12+..........+358 x 12
=12 x (32 +...............+358)= 4 x 3 x (32 +...............+358)
Vì: m.n=m.n chia hết cho n hoặc m. Mà ở đây ta có 4 chia hết cho4.
=> Tổng này chia hết cho 4.
Bài 2:
Ta có: 12a chia hết cho 12; 36b chia hết cho 12.
=> tổng này chia hết cho 12.
Bài 4:a) Ta có: 5 + 5^2 + 5^3= 5 + (.........5) + (............5) = (............5)
Vậy tổng này có kết quả có chữ số tận cùng là 5. Mà những số có chữ số tận cùng là 5 thì chia hết cho 5.
=> Tổng này chia hết cho 5.
1, ta có 2a+7b chia hết cho 3 => 2(2a+7b) chia hết cho 3 hay 4a + 14b chia hết cho 3
xét hiệu : ( 4a+14b ) - ( 4a+ 2b) = 12b chia hết cho 3 , với mọi b thuộc N
mà 4a+14b chia hết cho 3 => 4a+2b chia hết cho 3 ( cái này áp dụng tính chất chia hết của 1 hiệu : x chia hết cho y , m chia hết cho y với m = x-z => z chia hết cho y)
2 , ý này tương tự thôi
vì 12 = 22. 3 mà (4,3)=1 nên để chứng minh 9a + 13b chia hết cho 12 , ta chúng minh 9a+13b chia hết cho 3 và 4
- , chứng minh chia hết cho 4
Ta có 111a + 2b chia hết cho 4 ( vì nó chia hết cho 12 mà )
Mà 2b chia hết cho 2 , với mọi b thuộc N
=> 111a chia hết cho 2 , mặt khác (111,2)=1 =>a chia hết cho 2
- , chứng minh chia hết cho 3
xét tổng 111a+2b+9a+13b = 120a+15b = 15(8a+b) chia hết cho 15 , mà 15=3.5 , đồng thời (3,5)=1
Mà 111a+2b chia hết cho 15 hay chia hết cho cả 3 và 5 ( vì 120 chia hết cho 15 )
Suy ra 9a+13b chia hết cho 3 , vì 9a chia hết cho 3 => 13b phải chia hết cho 3 , mà 13 và 3 là 2 số nguyên tố => b chia hết cho 3
đến đây bạn làm tiếp đi....gần xong rồi
Tổng (111a + 23b) + (9a + 13b) = 120a + 36b => 9a + 13b = (120a + 36b) - (111a + 23b)
Vì 120a + 36b chia hết cho 12 và 111a + 23b chia hết cho 12
=> (120a + 36b) - (111a + 23b) chia hết cho 12 => 9a + 13b chia hết cho 12