K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2020

Giả sử rằng \(a+b+c+d\) là hợp số

Ta dễ có được: \(a^n+b^n+c^n+d^n-\left(a+b+c+d\right)⋮2\)

Mà \(a^n+b^n+c^n+d^n>2\rightarrow a^n+b^n+c^n+d^n\) là hợp số

Xét trường hợp \(a+b+c+d\) là số nguyên tố

Đặt \(a+b+c+d=p\Rightarrow a=p-b-c-d\Rightarrow ab=pb-b^2-bc-db\)

\(\Leftrightarrow cd=pb-b^2-bc-db\Leftrightarrow\left(b+c\right)\left(b+d\right)=pb\)

Do p là số nguyên tố nên \(\orbr{\begin{cases}b+c⋮p\\b+d⋮p\end{cases}}\Rightarrow b+c>a+b+c+d\left(v\right)b+d>a+b+c+d\) * vô lý *

Vậy ta có đpcm

Một bài tập ứng dụng của bài toán trên ( được coi là bổ đề )

Tìm các số nguyên dương a;b thỏa mãn \(a^3+3\) là số chính phương và \(a^2+2\left(a+b\right)\) là số nguyên tố

^_^

22 tháng 10 2017

Ta có:

ab = bc

\(\Rightarrow\) a = c (1)

bc = cd

\(\Rightarrow\) b = d (2)

cd = de

\(\Rightarrow\) c = e (3)

de = ea

\(\Rightarrow\) d = a (4)

ea = ab

\(\Rightarrow\) e = b (5)

Từ (1), (2), (3), (4), (5) \(\Rightarrow\) a = b = c = d = e

\(\Rightarrow\) ĐPCM

22 tháng 10 2017

Mấy bài rồi?hihi

FIGHTING!!!haha

Câu 1: Theo mik nghĩ thì cái đề vô lí hết mức.

Cho tam giác ABC , trên nửa mặt phẳng bờ BC không chứa điểm A , vẽ điểm A

6 tháng 12 2020

Bạn nghĩ vô lí thì có ấy!!

Cái đề này hoàn toàn 100% là k có j sai hết!!!!!

a: Sửa đề: góc ABC=62 độ 

\(\widehat{ACB}=90^0-62^0=28^0\)

b: Xét ΔACD và ΔMCD có

CA=CM

\(\widehat{ACD}=\widehat{MCD}\)

CD chung

Do đó: ΔACD=ΔMCD

c: Xét tứ giác AECD có

AE//CD

CE//AD

DO đó: AECD là hình bình hành

Suy ra: AE=CD

3 tháng 11 2019

Với số lượng chữ b ở tử và mẫu như nhau, ta có:

(abbb...b) / (bbb...bc)

= (a/c) . (bb...b / bb...b)

= (a/c) . 1

= a/c (đpcm)

Xin phép được giải bài mà chính bản thân hỏi :v

Có \(\frac{\overline{ab}}{\overline{bc}}=\frac{a}{c}\Rightarrow\frac{a}{c}=\frac{10a+b}{10b+c}=\frac{9a+b}{10b}=\frac{9ak+bk}{10bk}\)          \(\left(k=11...1\right)\)(n chữ số 1)

                       \(\Rightarrow\frac{a}{c}=\frac{9a\cdot11...1+b\cdot11...1}{10b\cdot11...1}=\frac{99...9\cdot a+b\cdot11...1}{b\cdot11...10}\)       (n chữ số 9)

                                                                                \(=\frac{\left(100..0-1\right)\cdot a+\overline{bb...b}}{\overline{bb...b0}}\)   (n chữ số 0) (n chữ số b)

                                                                                \(=\frac{\overline{a00...0}-a+\overline{bb...0}}{\overline{bb...b0}}\)

                                                                                \(=\frac{\overline{a00...0}+\overline{bb...b}}{\overline{bb...b0}+c}=\frac{\overline{abb...b}}{\overline{bb...bc}}\)    (đpcm)

10 tháng 1 2018

Tự vẽ hình nha!

a) \(\Delta\)ACD và \(\Delta\)ABE có: \(\left\{{}\begin{matrix}AC=AB\\\widehat{A}\left(chung\right)\\AD=AE\end{matrix}\right.\)

\(\Rightarrow\Delta ACD=\Delta ABE\left(c.g.c\right)\)

\(\Rightarrow CD=BE\) (2 cạnh tương ứng)