Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
ab = bc
\(\Rightarrow\) a = c (1)
bc = cd
\(\Rightarrow\) b = d (2)
cd = de
\(\Rightarrow\) c = e (3)
de = ea
\(\Rightarrow\) d = a (4)
ea = ab
\(\Rightarrow\) e = b (5)
Từ (1), (2), (3), (4), (5) \(\Rightarrow\) a = b = c = d = e
\(\Rightarrow\) ĐPCM
Câu 1: Theo mik nghĩ thì cái đề vô lí hết mức.
Cho tam giác ABC , trên nửa mặt phẳng bờ BC không chứa điểm A , vẽ điểm A
Bạn nghĩ vô lí thì có ấy!!
Cái đề này hoàn toàn 100% là k có j sai hết!!!!!
a: Sửa đề: góc ABC=62 độ
\(\widehat{ACB}=90^0-62^0=28^0\)
b: Xét ΔACD và ΔMCD có
CA=CM
\(\widehat{ACD}=\widehat{MCD}\)
CD chung
Do đó: ΔACD=ΔMCD
c: Xét tứ giác AECD có
AE//CD
CE//AD
DO đó: AECD là hình bình hành
Suy ra: AE=CD
Với số lượng chữ b ở tử và mẫu như nhau, ta có:
(abbb...b) / (bbb...bc)
= (a/c) . (bb...b / bb...b)
= (a/c) . 1
= a/c (đpcm)
Xin phép được giải bài mà chính bản thân hỏi :v
Có \(\frac{\overline{ab}}{\overline{bc}}=\frac{a}{c}\Rightarrow\frac{a}{c}=\frac{10a+b}{10b+c}=\frac{9a+b}{10b}=\frac{9ak+bk}{10bk}\) \(\left(k=11...1\right)\)(n chữ số 1)
\(\Rightarrow\frac{a}{c}=\frac{9a\cdot11...1+b\cdot11...1}{10b\cdot11...1}=\frac{99...9\cdot a+b\cdot11...1}{b\cdot11...10}\) (n chữ số 9)
\(=\frac{\left(100..0-1\right)\cdot a+\overline{bb...b}}{\overline{bb...b0}}\) (n chữ số 0) (n chữ số b)
\(=\frac{\overline{a00...0}-a+\overline{bb...0}}{\overline{bb...b0}}\)
\(=\frac{\overline{a00...0}+\overline{bb...b}}{\overline{bb...b0}+c}=\frac{\overline{abb...b}}{\overline{bb...bc}}\) (đpcm)
Tự vẽ hình nha!
a) \(\Delta\)ACD và \(\Delta\)ABE có: \(\left\{{}\begin{matrix}AC=AB\\\widehat{A}\left(chung\right)\\AD=AE\end{matrix}\right.\)
\(\Rightarrow\Delta ACD=\Delta ABE\left(c.g.c\right)\)
\(\Rightarrow CD=BE\) (2 cạnh tương ứng)
Giả sử rằng \(a+b+c+d\) là hợp số
Ta dễ có được: \(a^n+b^n+c^n+d^n-\left(a+b+c+d\right)⋮2\)
Mà \(a^n+b^n+c^n+d^n>2\rightarrow a^n+b^n+c^n+d^n\) là hợp số
Xét trường hợp \(a+b+c+d\) là số nguyên tố
Đặt \(a+b+c+d=p\Rightarrow a=p-b-c-d\Rightarrow ab=pb-b^2-bc-db\)
\(\Leftrightarrow cd=pb-b^2-bc-db\Leftrightarrow\left(b+c\right)\left(b+d\right)=pb\)
Do p là số nguyên tố nên \(\orbr{\begin{cases}b+c⋮p\\b+d⋮p\end{cases}}\Rightarrow b+c>a+b+c+d\left(v\right)b+d>a+b+c+d\) * vô lý *
Vậy ta có đpcm
Một bài tập ứng dụng của bài toán trên ( được coi là bổ đề )
Tìm các số nguyên dương a;b thỏa mãn \(a^3+3\) là số chính phương và \(a^2+2\left(a+b\right)\) là số nguyên tố
^_^