K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2019

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
                                         \(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
                                          \(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

25 tháng 10 2019

Ta có: \(\frac{\left(a^2+b^2\right)}{\left(c^2+d^2\right)}=\frac{ab}{cd}.\)

\(\Rightarrow\left(a^2+b^2\right).cd=ab.\left(c^2+d^2\right)\)

\(\Rightarrow a^2cd+b^2cd=abc^2+abd^2\)

\(\Rightarrow a^2cd+b^2cd-abc^2-abd^2=0\)

\(\Rightarrow\left(a^2cd-abc^2\right)-\left(abd^2+b^2cd\right)=0\)

\(\Leftrightarrow ac.\left(ad-bc\right)-bd.\left(ad-bc\right)=0\)

\(\Leftrightarrow\left(ad-bc\right).\left(ac-bd\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}ad-bc=0\\ac-bd=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}ad=bc\\ac=bd\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\frac{a}{b}=\frac{c}{d}\\\frac{a}{b}=\frac{d}{c}\end{matrix}\right.\left(đpcm\right).\)

Chúc bạn học tốt!

25 tháng 10 2019

cho mik làm bạn nha, tuấn

21 tháng 9 2017

Theo đề bài:

\(\dfrac{a}{b}=\dfrac{c}{d}=h\)

\(\Rightarrow\left\{{}\begin{matrix}a=bh\\c=dh\end{matrix}\right.\)

Khi đó:

\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bh+b}{dh+d}\right)^2=\left[\dfrac{b\left(h+1\right)}{d\left(h+1\right)}\right]^2=\dfrac{b^2}{d^2}=\dfrac{b}{d}\)

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{bh^2+b^2}{dh^2+d^2}=\dfrac{b^2\left(h^2+1\right)}{d^2\left(h^2+1\right)}=\dfrac{b^2}{d^2}=\dfrac{b}{d}\)

Ta có điều phải chứng minh

1 tháng 3 2015

Hoặc 

Xét ( a2 + b2 + c2 + d2 )  - ( a + b + c + d)

        = a(a -1)  + b( b -1) + c( c – 1) + d( d – 1)

Vì a là  số nguyên dương nên a, (a – 1) là hai số tự nhiên liên tiếp

=> a(a-1) chia hết cho 2. Tương tự ta có b(b-1); c(c-1); d(d-1) đều chia hết cho 2

=> a(a -1)  + b( b -1) + c( c – 1) + d( d – 1) là số chẵn

Lại có a2 + c2 = b2 + d2=>  a2 + b2 + c2 + d2 = 2( b2 + d2) là số chẵn.

Do đó a + b + c + d là số chẵn mà a + b + c + d > 2 (Do a, b, c, d thuộc N*)

 a + b + c + d là hợp số.

 

a2

13 tháng 3 2015

Bạn Trần Thùy Dung ơi làm sai ùi cách 1 làm sai ùi:

đây là phép cộng không phải phép nhân

 

22 tháng 10 2016

a) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow a=b=c\)

22 tháng 10 2016

có câu b,c ko bạn