Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Ta có : a/b = c/d => a/c = b/d
Đặt a/c = b/d = k => a = ck ; b = dk
Khi đó, ta có : \(\frac{2012.ck+2013.dk}{2012.ck-2013.dk}=\frac{\left(2012c+2013d\right).k}{\left(2012c-2013d\right).k}=\frac{2012c+2013d}{2012c-2013d}\)(đpcm)
\(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}=\frac{a+b+c+d}{2a+2b+2c+2d}=\frac{a+b+c+d}{2\left(a+b+c+d\right)}=\frac{1}{2}\)
\(\Rightarrow a=\frac{2b}{2}=b\) \(c=\frac{2d}{2}=d\)
\(b=\frac{2c}{2}=c\) \(d=\frac{2a}{2}=a\)
\(\Rightarrow a=b=c=d\)
Ta có: \(A=\frac{2011a-2010b}{c+d}+\frac{2011b-2010c}{a+d}+\frac{2011c-2010d}{a+b}+\frac{2011d-2010a}{b+c}\)
\(=\frac{2011a-2010a}{2a}+\frac{2011a-2010a}{2a}+\frac{2011a-2010a}{2a}+\frac{2011a-2010a}{2a}\)
\(=\frac{4a}{2a}=2\)
A ₫ 2 day ban so yeoung cheing nhe. Cac ban kcho mik nha
Từ \(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2d}=\dfrac{d}{2a}\Rightarrow\dfrac{1}{2}.\dfrac{a}{b}=\dfrac{1}{2}.\dfrac{b}{c}=\dfrac{1}{2}.\dfrac{c}{d}=\dfrac{1}{2}.\dfrac{d}{a}\)
⇒ \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}=\dfrac{a+b+c+d}{b+c+d+a}=1\)
⇒ \(a=b=c=d\)
Thay b = a ; c = a ; d = a vào biểu thức A ta có:
\(A=\dfrac{2011a-2010a}{2a}+\dfrac{2011a-2010a}{2a}+\dfrac{2011a-2010a}{2a}+\dfrac{2011a-2010a}{2a}\)
\(A=\dfrac{a}{2a}+\dfrac{a}{2a}+\dfrac{a}{2a}+\dfrac{a}{2a}\)
\(A=\dfrac{1}{2}.4=2\)
Vậy A = 2
\(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2d}=\dfrac{d}{2a}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2d}=\dfrac{d}{2a}=\dfrac{a+b+c+d}{2a+2b+2c+2d}=\dfrac{1}{2}\)
=>\(\dfrac{a}{2b}=\dfrac{1}{2}\)=>2a=2b =>a=b
\(\dfrac{b}{2c}=\dfrac{1}{2}\)=>2b=2c =>b=c
\(\dfrac{c}{2d}=\dfrac{1}{2}\)=>2c=2d =>c=d
\(\dfrac{d}{2a}=\dfrac{1}{2}\)=>2d=2a =>d=a
=>a=b=c=d.
*\(\dfrac{2011a-2010b}{c+d}+\dfrac{2011b-2010c}{a+d}+\dfrac{2011c-2010d}{a+b}+\dfrac{2011d-2010a}{b+c}\)
=\(\dfrac{2011a-2010a}{a+a}+\dfrac{2011a-2010a}{a+a}+\dfrac{2011a-2010d}{a+a}+\dfrac{2011a-2010a}{a+a}\)
=\(\dfrac{a}{2a}+\dfrac{a}{2a}+\dfrac{a}{2a}+\dfrac{a}{2a}\)=2
Từ \(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2d}=\dfrac{d}{2a}\Rightarrow\dfrac{1}{2}\cdot\dfrac{a}{b}=\dfrac{1}{2}\cdot\dfrac{b}{c}=\dfrac{1}{2}\cdot\dfrac{c}{d}=\dfrac{1}{2}\cdot\dfrac{d}{a}\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}=\dfrac{a+b+c+d}{b+c+d+a}=1\)
\(\Rightarrow a=b=c=d\)
Thay \(b=a;c=a;d=a\) vào biểu thức A ta có;
\(A=\dfrac{2011a-2010a}{2a}+\)\(\dfrac{2011a-2010a}{2a}+\)\(\dfrac{2011a-2010a}{2a}+\)\(\dfrac{2011a-2010a}{2a}\)
\(A=\)\(\dfrac{a}{2a}+\)\(\dfrac{a}{2a}+\)\(\dfrac{a}{2a}+\)\(\dfrac{a}{2a}\)
\(A=\dfrac{1}{2}\cdot4=2\)
Vậy \(A=2\)
Vì a ; b ; c ; d > 0
=> a + b + c + d > 0
=> 2(a + b + c + d) > 0
=> 2a + 2b + 2c + 2d > 0
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}=\frac{a+b+c+d}{2b+2c+2d+2a}=\frac{a+b+c+d}{2\left(a+b+c+d\right)}=\frac{1}{2}\)
=> \(\frac{a}{2b}=\frac{1}{2}\Rightarrow2a=2b\Rightarrow a=b\)
Tương tự,ta được a = b = c = d
Khi đó A = \(\frac{2013a-2012b}{c+d}+\frac{2013b-2012c}{a+d}+\frac{2013c-2012d}{a+b}+\frac{2013d-2012a}{b+c}\)
= \(\frac{2013a-2012a}{2a}+\frac{2013b-2012b}{2b}+\frac{2013c-2012c}{2c}+\frac{2013d-2012d}{2d}\)(Vì a = b = c = d)
= \(\frac{a}{2a}+\frac{b}{2b}+\frac{c}{2c}+\frac{d}{2d}=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=2\)