Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)(Tính chất dãy tỉ số bằng nhau)
=> \(\frac{a^{1994}}{b^{1994}}=\frac{c^{1994}}{d^{1994}}=\frac{\left(a+c\right)^{1994}}{\left(b+d\right)^{1994}}=\frac{a^{1994}+c^{1994}}{b^{1994}+d^{1994}}\)(Tính chất dãy tỉ số bằng nhau)
=> \(\frac{\left(a+c\right)^{1994}}{\left(b+d\right)^{1994}}=\frac{a^{1994}+c^{1994}}{b^{1994}+d^{1994}}\)
=> Đpcm
Câu 2 tớ đăng phía dưới rồi đó.
Câu 3 đang định đăng lên thì cậu đăng là sao hả?
Ta có a : b : c = m : (m + n) : (m + 2n) Hay \(\frac{a}{m}=\frac{b}{m+n}=\frac{c}{m+2n}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{m}=\frac{b}{m+n}=\frac{c}{m+2n}=\frac{a-b}{m-\left(m+n\right)}=\frac{b-c}{\left(m+n\right)-\left(m+2n\right)}=\frac{c-a}{\left(m+2n\right)-m}\)
=> \(\frac{a-b}{-n}=\frac{b-c}{-n}=\frac{c-a}{2n}\)=> \(\frac{-2\left(a-b\right)}{2n}=\frac{-2\left(b-c\right)}{2n}=\frac{c-a}{2n}\)
=> -2(a - b) = -2(b - c) = c - a
=> (c- a)2 = [-2(a - b)].[-2(b - c)] = 4(a - b)(b - c)
a,b,c tỉ lệ với m, m+n, m+2n => \(\frac{a}{m}=\frac{b}{m+n}=\frac{c}{m+2n}=k\)
=> \(a=mk;\)\(b=\left(m+n\right)k=mk+nk\); \(c=\left(m+2n\right)k=mk+2nk\)
Ta có: \(VT=4\left(a-b\right)\left(b-c\right)=4\left(mk-mk-nk\right)\left(mk+nk-mk-2nk\right)\)
\(=4\left(-nk\right)\left(-nk\right)=4n^2k^2\)
\(VP=\left(c-a\right)^2=\left(mk+2nk-mk\right)^2=\left(2nk\right)^2=4n^2k^2\)
suy ra: đpcm
Câu 1
Ta có : \(\frac{a}{b}=\frac{c}{d}=>\left(\frac{a}{b}+1\right)=\left(\frac{c}{d}+1\right)\left(=\right)\frac{a+b}{b}=\frac{c+d}{d}\)
=> ĐPCM
Câu 2
Ta có \(\frac{a}{b}=\frac{c}{d}=>\frac{b}{a}=\frac{d}{c}=>\left(\frac{b}{a}+1\right)=\left(\frac{d}{c}+1\right)\left(=\right)\frac{b+a}{a}=\frac{d+c}{c}=>\frac{a}{b+a}=\frac{c}{d+c}\)
=> ĐPCM
Câu 3
Câu 3
Ta có \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(=) (a+b).(c-d)=(a-b).(c+d)(=)ac-ad+bc-bd=ac+ad-bc-bd(=)-ad+bc=ad-bc(=) bc+bc=ad+ad(=)2bc=2ad(=)bc=ad=> \(\frac{a}{b}=\frac{c}{d}\)
=> ĐPCM
Câu 4
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(=>\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có \(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\left(1\right)\)
Lại có \(\frac{a^2+c^2}{b^2+d^2}=\frac{b^2k^2+c^2k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)
Từ (1) và (2) => ĐPCM